Corn and soybean response to granulated and liquid phosphorus fertilizer in soils of the Semiarid Pampas

  • María Ingrasia Adema Bernal Universidad Nacional de La Pampa - Facultad de Agronomía
  • Santiago Hernán Paternessi Universidad Nacional de La Pampa - Facultad de Agronomía
  • Elke Johanna Noellemeyer Universidad Nacional de La Pampa - Facultad de Agronomía

Keywords:

Bray-Kurtz 1, Olsen, ammonium polyphosphate, triple superphosphate

Abstract

The aim of the survey was to evaluate the efficiency of two methods for the determination of available P and the effect of fertilization with solid and liquid P sources on corn and soybean crops in soils with calcium carbonates. A field experiment near general Pico (La Pampa) was used where during two crop seasons early and late planted corn and in one season two maturity groups of soybean were fertilized with triple superphosphate (TSP) and ammonium polyphosphate (APP) at 40 kg.ha-1 of P2O5. The available P was determined with Bray-Kurtz 1 and Olsen extractions, and the yield was recorded in all treatments. The results showed no response to P addition except in two fertilized treatments with TSP (one late corn crop and in the group 4 soybean cultivar). This was particularly true for POlsen, while for Bray-Kurtz 1 the differences were less. These results indicated that the soils solubilized sufficient quantities of P to satisfy the requirements of corn and soybean and no differences between the two sources was found.

 

DOI: http://dx.doi.org/10.19137/semiarida.2017(01).11-18

Downloads

Download data is not yet available.

References

Alamgir M. & P. Marschner. 2013. Short-term effects of application of different rates of inorganic P and residue P on soil P pools and wheat growth. J. Plant Nutr. Soil Sci. 176: 696-702.

Álvarez C., A. Becker, M. Grumelli, H. Schiavo, R. Bagnato, A. Quiroga & E. Noellemeyer. 2015. Estudio morfopedologico de una catena representativa del noroeste de la provincia de La Pampa. En: II Jornadas Nacionales de Suelos de Ambientes Semiáridos. pp. 2-4.

Buschiazzo D.E., G.G. Hevia, E.N. Hepper, A. Urioste, A.A. Bono & F. Babinec. 2001. Organic C, N and P in size fractions of virgin and cultivated soils of the semi-arid pampa of Argentina. J. Arid Environ. 48: 501-508.

Daly K., D. Styles, S. Lalor & D.P. Wall. 2015. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur. J. Soil Sci. 66: 792-801.

Di Rienzo J.A., F. Casanoves, M. Balzarini, L. Gonzalez, M. Tablada & C. Robledo. 2013. Infostat - Sofware estadístico. Universidad Nacional de Córdoba, Argentina.

Fernández López C. & R. Mendoza. 2008. Evaluación del fósforo disponible mediante tres métodos en distintos suelos y manejos productivos. Ciencia del suelo 26: 13-27.

Kumhálová J., F. Kumhála, M. Kroulík & S. Matějková. 2011. The impact of topography on soil properties and yield and the effects of weather conditions. Precis. Agric. 12: 813-830.

Lombi E., M.J. McLaughlin, C. Johnston, R.D. Armstrong & R.E. Holloway. 2004. Mobility and Lability of Phosphorus from Granular and Fluid Monoammonium Phosphate Differs in a Calcareous Soil. Soil Sci. Soc. Am. J. 68: 682 689.

Lombi E., M.J. McLaughlin, C. Johnston, R.D. Armstrong & R.E. Holloway. 2005. Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and noncalcareous soils under laboratory conditions. Plant Soil 269: 25-34.

Mason S., A. McNeill, M.J. McLaughlin & H. Zhang. 2010. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thinfilms (DGT) and extraction methods. Plant Soil 337: 243-258.

McBeath T.M., R.J. Smernik, E. Lombi & M.J. McLaughlin. 2006. Hydrolysis of Pyrophosphate in a Highly calcareous Soil. Soil Sci. Soc. Am. J. 70: 856.

McBeath T.M., M.J. McLaughlin, R.D. Armstrong, M. Bell, M.D. Bolland, M.K. Conyers, R.E. Holloway & S.D. Mason. 2007. Predicting the response of wheat ( Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Aust. J. Soil Res. 45: 448.

McLaughlin M.J., T.M. McBeath, R. Smernik, S.P. Stacey, B. Ajiboye & C. Guppy. 2011. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: an Australian perspective. Plant Soil 349: 69-87.

Rubio G., M.C. Cabello & F. Gutiérrez Boehm. 2007. ¿Cuánto fósforo hay que aplicar para alcanzar el umbral crítico de fósforo disponible en el suelo? II. Cálculos para las zonas Sur y Norte de la Región Pampeana. Inf. Agronómicas Hisp. 35.

Schoenau J.J. 2006. Chapter 8: Sodium Bicarbonate-Extractable Phosphorus. In: Soil Sampling and Methods of Analysis (M.R.Carter & E.G Gregorich Eds.). Canadian Society of Soil Science.

Suñer L.G. & J.A. Galantini. 2013. Dinámica de las formas del P en suelos de la Región Sudoeste Pampeana. Ciencia del Suelo 31: 33-44.

Zheng H.F., L.D.Chen, X.Y. Yu, X.F. Zhao, Y. Ma, & Z.B. Ren. 2015. Phosphorus control as an effective strategy to adapt soybean to drought at the reproductive stage: evidence from field experiments across northeast China. Soil Use Manag. 31: 19-28.

Published

2018-02-16

How to Cite

Adema Bernal, M. I., Paternessi, S. H., & Noellemeyer, E. J. (2018). Corn and soybean response to granulated and liquid phosphorus fertilizer in soils of the Semiarid Pampas. Semiárida, 27(1), 11–18. Retrieved from https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/2156

Issue

Section

Artículos Científicos y Técnicos