Efecto del ambiente, el genotipo y la fertilidad sobre el rendimiento en grano de trigo pan y su calidad en la región subhúmeda seca pampeana

  • Miguel Ángel Fernández Universidad Nacional de La Pampa, Facultad de Agronomía
  • Osvaldo Zingaretti Universidad Nacional de La Pampa, Facultad de Agronomía
  • Mirta Castaño Universidad Nacional de La Pampa, Facultad de Agronomía

DOI:

https://doi.org/10.19137/semiarida.2019(02)11-­24

Palabras clave:

Triticum aestivum; producción; peso hectolítrico; proteína

Resumen

El trigo pan es importante en la región subhúmeda seca pampeana. El rendimiento en grano y su calidad muestran gran variabilidad interanual. El objetivo fue evaluar el rendimiento de grano, el peso hectolítrico y el contenido de proteína y su variación por el efecto del año, el genotipo, y la fertilidad. Los ensayos se realizaron en la Facultad de Agronomía de la UNLPam (36° 32’ 49” S ; 64° 18’ 20” W) durante 6 años, con 5 genotipos. Al tratamiento fertilizado se le agregó 100 kg.ha-1 de urea al voleo en macollaje temprano. La campaña ejerció un gran efecto sobre el rendimiento. El peso hectolítrico (PH) también fue muy influenciado por el año y además por el genotipo. Sobre el porcentaje de proteína, en cambio, la fertilidad fue el factor más importante. No hubo una relación entre el grupo de calidad y el porcentaje de proteínas. El fertilizante nitrogenado en macollaje aumentó en los seis años el porcentaje de proteína, mientras que, al rendimiento solo en tres. El aumento del uso consuntivo durante el llenado de los granos provocó un aumento del PH y una disminución del contenido de proteínas en ambos tratamientos de fertilidad. El incremento de la temperatura durante el llenado disminuyó el PH y aumentó el porcentaje de proteína, solo en el tratamiento fertilizado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AACC International. (2000). Approved methods of American Association of Cereal Chemists, 10th Ed. Method 08­01, Method 30­25 and Method 46­13. The Association: St. Paul, MN.

Aliaga, V. S., Ferrelli, F., & Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237­-1247.

Aktaş, H. (2016). Tracing highly adapted stable yielding bread wheat (Triticum aestivum L.) genotypes for greatly variable South­Eastern Turkey. Applied Ecology & Environmental Research, 14, 159­-176.

Bhullar, S. S. & Jenner, C. F. (1986). Effects of a brief episode of elevated temperature on grain filling in wheat ears cultured on solutions of sucrose. Australian journal of plant physiology, 13, 617­-626.

Campillo, R., Jobet, C., & Undurraga, P. (2010). Effects of nitrogen on productivity, grain quality, and optimal nitrogen rates in winter wheat cv Kumpa INIA in andisols of southern Chile. Chilean journal of agricultural research, 70, 122­-131.

Cuniberti, M. (2004). Propuesta de Clasificación del Trigo Argentino. INTA Marcos Juárez. IDIA XXI, 6, 21­-25.

De Vita, P., Li Destri Nicosia, L., Nigro, F., Platani, C., Riefolo, C., Di Fonzo, N., & Cattivelli, L. (2007). Breeding progress in morphophysiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26, 39­-53.

Dias, A. S., & Lidon, F. C. (2009). Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. Journal of Agronomy and Crop Science, 195, 137-­147.

Díaz, R. A., y Mormeneo, I. (2002). Zonificación del clima de la Región Pampeana mediante análisis de conglomerados con consenso. Revista Argentina de Agrometeorología, 2, 125-­131.

Di Rienzo, J. A., Casanoves, F. , Balzarini, M. G., González, L., Tablada, M., y Robledo, C. W. (2018). InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Dubois, M. E., y Gaido, Z. A. (2006). Calidad panadera de nuevos genotipos de trigo pan Agriscientia, 23, 105­-108.

Dube, E., Kilian, W., Mwadzingeni, L., Sosibo, N. Z., Barnard, A., & Tsilo, T. J. (2018). Genetic progress of spring wheat grain yield in various production regions of South Africa. South African Journal of Plant and Soil, 36, 33-­39.

Dreccer, M., Ruiz, R., Maddonni, G., y Satorre, E. (2012). Bases ecofisiológicas de la nutrición en los cultivos de grano. En: Producción de granos. Bases funcionales para su manejo. Capítulo 18. Ed. Fac. Agronomía, UBA.

Espitia, E., Villaseñor, H., Peña, E., Roberto, J., Huerta J., y Limón, A. (2004). Calidad industrial de trigos harineros mexicanos para temporal. II. Variabilidad genética y criterios de selección. Revista Fitotecnia Mexicana, 27, 41­-47.

Farshadfar, E., Mahmodi, N., & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5, 1837-­1844.

Fernández, M. A. (2007). Estrategias para mejorar el rendimiento de cereales graníferos invernales en la Región Semiárida Pampeana Central. (Tesis Maestria) Universidad Nacional del Sur, Bahía Blanca, Argentina.

Fowler, D. B., Brydon,J., Darroch, B. A., Entz, M. H., & Johnston, A. M. (1990). Environment and genotype influence on grain protein concentration of wheat and rye. Agronomy Journal, 82, 666-­664.

Gooding, M. J., Ellis, R. H., Shewry, P. R., & Schofield, J. D. (2003). Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science, 37, 295­309.

Guttieri, M. J., Ahmad, R., Stark, J. C., & Souza, E. (2000). End­use quality of six hard red spring wheat cultivars at different irrigation levels. Crop Science, 40, 631­-635.

Guttieri, M. J., McLean, R., Stark, J. C. & Souza, E. (2005). Managing irrigation and nitrogen fertility of hard spring wheat’s for optimum bread and noodle quality. Crop Science, 45, 2049-­2059.

INASE. (2010). Calidad industrial de variedades de trigo pan grupos de calidad. Comité de Cereales de Invierno de la Comisión Nacional de Semillas –INASE. http://www.marcosjuarez.com/Admin/Archivos/File/2010/TRIGO.pdf.

INASE. (2014). Calidad industrial de variedades de trigo pan grupos de calidad. Comité de Cereales de Invierno de la Comisión Nacional de Semillas –INASE. http://inta.gob.ar/sites/default/files/script­tmp­inta_gpos_calidad_trigopan_14. pdf

Li, P., Chen J. & Wu, P. (2011). Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and non­stress conditions. Agronomy Journal, 103, 1619­-1628.

Lizana, X. C., & Calderini D. F. (2013). Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile. Journal of Agricultural Science, 151, 209-­221.

Maçãs, B., Coutinho, J., Almeida, A., Costa, R., Pinheiro, N., Gomes, C., Coco, J., Costa, A., Bagulho, A., & Jézequel, S. (2015). Designing wheat ideotype for Portugal understanding and reducing yield gap under Mediterranean climate. Conference paper. https://www.researchgate.net/publication/ 283642602

Maich, R. H., Steffolani, M. E., Di Rienzo, J. A. & León, A. E. (2017). Association between grain yield, grain quality and morpho­physiological traits along ten cycles of recurrent selection in bread wheat (Triticum aestivum L.). Cereal Research Communications, 45, 146-­153.

Mohammadi, M., Sharifi, P., Karimizadeh, R., & Shefazadeh, M. K. (2012). Relationships between grain yield and yield components in bread wheat under different water availability (dryland and supplemental irrigation conditions). Notulae Botanicae Horti Agrobotanici ClujNapoca, 40, 195­-200.

Nicolas, M., Lambers, H., Simpson, R. J., & Dalling, M. J. (1985). Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought­tolerance. Annals Botany, 55, 727-­742.

Oury, F. X., & Godin, C. (2007). Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favorable genotypes?. Euphytica, 157, 45­-57.

Panozzo, J. F., & Eagles, H. A. (1999). Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments. Australian Journal of Agricultural Research, 50, 1007­-1015.

Petersen, R. G. (1994). Agricultural field experiments. Design and analysis. New York, EEUU: Marcel Dekker, Inc.

Pimentel Gomes, F. (1978). Curso de estadística experimental. Buenos Aires, Argentina: Ed. Hemisferio Sur.

Pascale, A. J., y Damario, E. A. (2004). Clasificación por tipos agroclimáticos del cultivo de trigo. En: Bioclimatología agrícola y agroclimatología. (A. J. Pascale & E. A. Damario Eds.). Fac. de Agron. Buenos Aires, Arg. p. 418-­436.

Saint Pierre, C., Peterson, C. J., Ross, A. S., Ohm, J. B., Verhoeven, M. C., Larson, M., & Hoefer, B. (2008). Winter wheat genotypes under different levels of nitrogen and water stress: Changes in grain protein composition. Journal Of Food Science, 47, 407-­416.

Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain­ illing of wheat. Plant & Soil, 257, 219­-226.

Shellenberger, J. A. (1980). Advances in milling technology. p. 227­270. En: Advances in cereal science and technology (Y. Pomeranz Ed.). St. Paul, Minn, EEUU. Am. Assoc. Cereal Chemists.

Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60, 1537­-1553. https://www.doi.org/10.1093/jxb/ erp058

Sofield, L., Evans, T., Cook, M. G., & Wardlaw, I. F. (1977). Factors influencing the rate and duration of grain filling in wheat. Australian journal of plant physiology, 4, 785-­797.

Soil Survey Staff. (2014). Claves para la Taxonomía de Suelos. Cap. 12: Molisoles. Dpto. Agric. de USA Serv. Conservación Rec. Nat. (12nd ed.), USDA.

Terman, G. L. (1979). Yields and protein content of wheat grain as affected by cultivar, N, and environmental growth factors. Agronomy Journal, 71, 437­-440.

Terman, G. L., Ramig, R. E., Dreier, A. F., & Olson, R. A. (1969). Yield­protein relationships in wheat grain, as affected by nitrogen and water. Agronomy Journal, 61, 755­-759.

Tkachuk, R., & Kuzina, F. D. (1979). Wheat: relations between some physical and chemical properties. Canadian Journal of Plant Science, 59, 15-­20.

Yang, R., Liang, X., Torrion, J. A., Walsh, O. S., O’Brien, K., & Liu, Q. (2018). The influence of water and nitrogen availability on the expression of end­use quality parameters of spring wheat. Agronomy, 8, 1­15. https://www.doi.org/10.3390/agronomy8110257.

Zadoks, J. C., Chang T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415­-421.

Zeleke, K. T., & Nendel, C. (2016). Analysis of options for increasing wheat (Triticum aestivum L.) yield in south­ astern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 166, 139­-148.

Zeleny, L. (1971). Criteria of wheat quality. p. 19­49. En: Wheat chemistry and technology (Y. Pomeranz ed.). St Paul, Minn., EEUU: Am. Assoc. Cereal Chemists.

Descargas

Publicado

2020-03-13

Cómo citar

Fernández, M. Ángel, Zingaretti, O., & Castaño, M. (2020). Efecto del ambiente, el genotipo y la fertilidad sobre el rendimiento en grano de trigo pan y su calidad en la región subhúmeda seca pampeana. Semiárida, 29(2), 11–24. https://doi.org/10.19137/semiarida.2019(02)11-­24

Número

Sección

Artículos Científicos y Técnicos