Niveles contrastantes de fructosa y urea agregados a una dieta basada en raigrás anual: efectos sobre síntesis de proteína microbiana, digestibilidad de nutrientes y parámetros de fermentación en fermentadores de flujo continuo
DOI:
https://doi.org/10.19137/semiarida.2019(01).33-41Palabras clave:
annual ryegrass, continuous culture, crude protein, microbial protein synthesis, water soluble carbohydrateResumen
The objective of this experiment was to evaluate the effects of the addition of crystalline fructose and urea to an annual ryegrassbased diet on microbial protein synthesis, fermentation profile and nutrient apparent digestibility, using continuous culture fermenters. Six fermenters were used in a 3 x 2 factorial arrangement with three levels of water soluble carbohydrates (WSC) obtained by crystalline fructose addition (21, 24 and 27 g.100 g DM1; LWSC, MWSC and HWSC, respectively) and two levels of CP obtained by urea addition (14.6 and 18.6 g.100 g DM1, LCP and HCP, respectively). Four 10d periods were ran sequentially (7d for adaptation, 3d for sampling). Microbial protein synthesis was assessed by purine to N ratio. There was a positive interaction between WSC and CP level on microbial protein synthesis (P<0.001). Water soluble carbohydrate level did not affect fermentation pH, ammonia concentration or total volatile fatty acids concentration (VFA). Greater CP levels also increased acetic acid proportion and tended to increase acetic to propionic acid ratio, whereas WSC level did not affect VFA proportions. Treatments did not affect nutrient digestibility. We conclude that the addition of crystalline fructose to annual ryegrass samples increased microbial protein synthesis at the greater levels of CP in diet.
Descargas
Citas
AOAC International (2000). Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg, MA, USA.
Berthiaume, R., Benchaar, C., Chaves, A. V., Tremblay, G. F., Castonguay, Y., Bertrand, A., Bélanger, G., Michaud, R., Lafrenière, C., McAllister, T. A.,& Brito, A. F. (2010). Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. Journal Dairy Science, 93, 693-700.
Calsamiglia, S., Cardozo, P. W., Ferret, A., & Bach, A. (2008). Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. Journal of Animal Science, 86, 702-711.
Chaney, A. L. & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8, 130-132.
Clark, J. H., Klusmeyer, T. H., & Cameron, M. R. (1992). Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science, 75, 2304-2323.
Cosgrove, G., Burke, J., Death, A., Hickey, M., Pacheco, D., & Lane, G. (2007). Ryegrasses with increased water soluble carbohydrate: Evaluating the potential for grazing dairy cows in New Zealand. Proceedings of the New Zealand Grassland Association , 69, 179-185.
Da Silva, M. S., Tremblay, G. F., Bélanger, G., Lajeunesse, J., Papadopoulos, Y. A., Fillmore, F. A., & Jobim, C. C. (2014). Forage energy to protein ratio of several legumegrass complex mixtures. Animal Feed Science and Technology, 188, 17-27.
Dijkstra, J., Ellis, J. L., Kebreab, J. L., Strathe, A. B., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172, 22-33.
DuBois, M., Gilles, K. A., Hamilton, J. D., Rebers, p., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Edwards, G. R., Parsons, A., Rasmussen, S., & Bryant, R. H. (2007). High sugar ryegrasses for livestock systems in New Zealand. Proceedings of the New Zealand Grassland Association, 69, 161-171.
Goering, H. K., & Van Soest, P. J. (1970). Forage Fiber Analysis. USDA Agricultural Research Service. Handbook number 379. U.S. Dept. of Agriculture. Superintendent of Documents. Washington DC: US Government Printing Office.
Gregorini, P., Eirin, M., Refi, R., Ursino, M., Ansin, O., & Gunter, S. (2006). Timing of herbage allocation in strip grazing: Effects on grazing pattern and performance of beef heifers. Journal of Animal Science, 84, 1943-1950.
Hall, M. B., & Huntington, G. B. (2008). Nutrient synchrony: Sound in theory, elusive in practice. Journal of Animal Science, 86, E287E292.
Hall, M. B. (2009). Analysis of starch, including maltooligosaccharides, in animal feeds: a comparison of methods and a recommended method for AOAC collaborative study. Journal Association of Official Analytical Chemists, 92, 42-49.
Hall, M. B. (2013). Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology, 185, 94-100.
Henning, P. H., Steyn, D. G., & Meissner, H. H. (1991). The effect of energy and nitrogen supply pattern on rumen bacterial growth in vitro. Animal Production, 53, 165-175.
Hoover, W. H., & S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. Dairy Science Journal, 74, 3630-3644.
Johnson, R.R. 1976. Influence of carbohydrate solubility on nonprotein nitrogen utilization in the ruminant. Journal of Animal Science, 43, 184-191.
Kim, K.H., Choung, J.J., y Chamberlain, D. G. (1999). Effects of varying the degree of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in lactating dairy cows consuming a diet of grass silage and a cerealbased concentrate. Journal of the Science of Food and Agriculture, 79, 1441-1447.
KingstonSmith, A. H., y Theodorou, M. K. (2000). Postingestion metabolism of fresh forage. New Phytologist, 148, 37-55.
Krishnamoorthy, U., Muscato, T. V., Sniffen, C. J., y Van Soest, P. J. (1982). Nitrogen fractions in selected feedstuffs. Journal of Dairy Science, 65, 217-225.
Krishnamoorthy, U., Sniffen, C. J., Stern, M. D., y Van Soest, P. J. (1983). Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen undegraded nitrogen content of feedstuffs. British Journal of Nutrition, 50, 555-568.
Lee, M. R. F., Harris, L. J., Moorby, J. M., Humphreys, M. O., Theodorou, M. K., MacRae, J. C., y Scollan, N. D. (2002). Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of watersoluble carbohydrate. Journal of Animal Science, 74, 587-596.
Mansfield, H. R., Endres, M. I., y Stern, M. D. (1994). Influence of nonfibrous carbohydrate and degradable intake protein on fermentation by ruminal microorganisms in continuous culture. Journal of Animal Science, 72, 2464-2474.
Mayland, H., Mertens, D., Taylor, T., Burns, J., Fisher, D., Gregorini, P., Ciavarella, T., Smith, K., Shewmaker, G., & Griggs, T. ( 2005). Diurnal changes in forage quality and their effects on animal preference, intake, and performance. California Alfalfa and Forage Symp., 35th. Visalia, California.
Merry, R. J., Lee, M. R. F., Davies, D. R., Dewhurst, R. J., Moorby, J. M., Scollan, N. D. y Theodorou, M. K. (2006). Effects of highsugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization. Journal of Animal Science, 84, 3049-3060.
Miller, L. A., Moorby, J. M., Davies, D. R., Humphreys, M. O., Scollan, N. D., MacRae, J. C., y Theodorou, M. K. (2001). Increased concentration of watersoluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from latelactation dairy cows. Grass Forage Science, 56, 383-394.
Moorby, J. M., Evans, R. T., Scollan, N. D., MacRae, J. C., y Theodorou, M. K. (2006). Increased concentration of water soluble carbohydrate in perennial ryegrass (Lolium perenne L.): evaluation in dairy cows in early lactation. Grass Forage Science, 61, 52-59.
Mouriño, F., R. Akkarawongsa, & P.J. Weimer. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science, 84, 848-859.
Parsons, A., Rasmussen, S., Xue, H., Newman, j., Anderson, C., y Cosgrove, G. (2004). Some ‘high sugar grasses’ don’t like it hot. Proceedings of the New Zealand Grassland Association, 66, 265-271.
Rotger, A., Ferret, A., Calsamiglia S., & Manteca, X. (2006). Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high concentrate beef cattle diets. Journal of Animal Science, 84, 1188-1196.
Russell, J. B., & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?. Journal of Dairy Science, 79, 1503-1509.
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32, 199-208.
Slyter, L. L., Bryant, M. P. & Wolin, M. J. (1966). Effect of pH on population and fermentation in a continuously cultured rumen ecosystem. Journal of Applied Microbiology, 14, 573-578.
Stern, M. D., Hoover, H., Sniffen, C. J., Crooker, B. A. & Knowlton, P. H. (1978). Effects of nonstructural carbohydrate, urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. Journal of Animal Science, 47, 944 -956.
Teather, R. M., & Sauer, F. D. (1988). A naturally compartmented rumen simulation system for the continuous culture of rumen bacteria and protozoa. Journal of Dairy Science, 71, 666-673.
Van Soest, P. V., Robertson,J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
Wanapat, M., Polyorach, S., Boonnop, K., Mapato, C., & Cherdthong, A. (2009). Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livestock Science, 125, 238-243.
Zinn, R. A. & Owens, F.vN. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science, 66, 157-166.
Publicado
Cómo citar
Número
Sección
Licencia
La Editorial de la Universidad Nacional de La Pampa (EdUNLPam) exigirá a los/as autores/as la firma del siguiente documento:
La EdUNLPam lleva a cabo la publicación del artículo: (Título del Artículo) en SEMIÁRIDA Rev.Fac.Agron UNLPam ISSN 2362-4337 (impresa) ISSN 2408-4077 (en línea), del cual el/los abajo firmantes son autores de una o más partes. En el mismo acto, el/los autores entregan exclusivamente a la EdUNLPam todos sus derechos protegidos por las leyes de propiedad intelectual que rigen en la Argentina para reproducir, publicar, editar, fijar, comunicar y transmitir públicamente en cualquier formato o medio impreso o electrónico, inclusive internet, el artículo enviado a publicación e incluirlo en índices o bases de datos nacionales e internacionales. A cambio, la EdUNLPam entrega a los autores la autorización para la publicación o reimpresión con ines académicos y educativos en cualquier libro o medio de divulgación, con la sola obligación de citar el artículo original publicado en la EdUNLPam. Cada autor acuerda en que el material provisto a la EdUNLPam es un trabajo original, que no ha sido impreso o publicado en cualquier otro medio con anterioridad y que no vulnera derechos de terceros. El Primer autor tendrá la posibilidad de leer y corregir el artículo ya editado como “prueba de galera”, pero si el autor no devolviera esas correcciones de la prueba de galera dentro del tiempo especificado, el proceso de producción y publicación podrá proseguir sin la aprobación del autor. El/los autor/es no recibirán compensación monetaria de la EdUNLPam por el uso del material contenido en este artículo y asumen la responsabilidad de las opiniones vertidas en él.