La estabilidad de rendimiento en grano de cereales invernales en la región subhúmedaseca pampeana

  • Miguel Ángel Fernández Universidad Nacional de La Pampa, Facultad de Agronomía
  • Osvaldo Zingaretti Universidad Nacional de La Pampa, Facultad de Agronomía
  • Diego Riestra Universidad Nacional de La Pampa, Facultad de Agronomía

DOI:

https://doi.org/10.19137/semiarida.2019(01).19-32

Palabras clave:

Trigo, triticale, adaptación, interacción genotipo x ambiente

Resumen

Los cereales de invierno son importantes en los agrosistemas de la región subhúmedaseca pampeana. Los factores ambientales son preponderantes en la definición del rendimiento, existiendo una gran interacción con el genotipo. El triticale granífero (X Triticosecale, Wittmack) y el trigo candeal (Triticum durum, Desf.), pueden ser alternativas del trigo pan (Triticum aestivum, L.) para estabilizar los rendimientos de los cereales invernales. El estudio fue realizado en el Campo de la Facultad de Agronomía de la UNLPam, ubicado en 36o46’ S y 64o17’ W. Se realizaron ensayos durante ocho años, en los que se compararon las tres especies (cinco variedades de trigo pan, cuatro de trigo candeal y dos de triticale), en dos condiciones de fertilidad. Los dos genotipos de triticale y el trigo pan Buck guaraní tuvieron mayor rendimiento en grano, mientras que los trigos candeales mostraron rendimientos medios a bajos. La estabilidad del rendimiento no fue exclusiva de una especie, ya que se clasificaron como estables el triticale Eronga 83, el trigo pan ACA 601 y el trigo candeal Ciccio e inestables al genotipo de trigo pan Abate y al trigo candeal Buck cristal. Los métodos CVi de Francis & Kannemberg (1978) y VEP de AMMI (1997) mostraron una buena descripción de la clasificación de estabilidad incluyendo todos los métodos. La estabilidad del rendimiento en grano no estuvo asociada a mayor potencial de rendimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allard, R. W., & Bradshaw, A. D. (1964). Implications of genotype­environmental interactions in applied plant breeding. Crop Science, 4, 503­-508.

Annicchiarico, P. (1997). Joint regression vs AMMI analysis of genotype­environment interactions for cereals in Italy. Euphytica, 94, 53­-62.

Araus, J. L., Slafer, G. A.,Royo, C. & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences, 27, 1­36.

Balzarini, M. (2003). Introducción al análisis multivariado. Notas de clases. Maestría en estadística aplicada. Córdoba, Argentina: Universidad Nacional de Córdoba.

Becker, H. C. (1981). Correlations among some statistical measures of phenotypic stability. Euphytica, 30, 835­-840.

Bozzini, A. (1988). Origin, distribution and production of durum wheat in the world. En:G. Fabriani. & C. Lintas (Eds), Durum wheat: chemistry and technology (pp. 1­16). St. Paul, United States: Asoc. Cereal Chemist Inc.

Ceccarelli, S., Nachit, M. M., Ortiz Ferrara, G., Mekni, M. S., Tahir, M.,van Leur, J. & Srivastava, J. P. (1987). Breeding strategies for improving cereal yield and stability under drought. En: J. P. Srivastava, E. Porceddu, E. Acevedo y S. Varma (Eds.). Drought tolerance in winter cereals (pp. 101­114). Chichester: Wiley.

Chenu, K. (2015). Characterizing the crop environment ­ nature, significance and applications. Crop Physiology, 321-­348. https://www.doi.org10.1016/b978­0­12417104­6.00013­3

Cooper, M., Stucker, R. E., DeLacy, I. H.,& Harch, B. D. (1997). Wheat breeding nurseries, target environments, and indirect selection for grain yield. Crop Science, 37, 1168-­1176.

Crossa, J. (1990). Statistical analyses of multilocations trials. Advances in Agronomy, 44, 55-­85.

Crossa, J., Gauch, H. G. & Zobel, R. W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science, 30, 493­-500.

Crossa, J., Wescott, B., & González, C. (1988). Analysing yield stability of maize genotypes using a spatial model. Theoretical and Applied Genetics, 75, 863-­868.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., y Robledo, C. W. (2018). InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Dolinassou, S., Noubissié Tchiagam, J. B., Djiranta Kemoral, A., & Njintang Yanou, N. ( 2012). Genotype × Environment interaction and kernel yield­stability of groundnut (Arachis hypogaea L.) in Northern Cameroon. Journal Applied Biology & Biotechnology, 4, 1­7.

Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36­-40.

Evans, L. T. (1993). Crop evolution, adaptation and yield. New York, United Stated: Cambridge University Press.

Farshadfar E., Mahmodi, N., & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5, 1837-­1844.

Fernández, M. A., Zingaretti, O., Brevedan, R. E., Mirassón, H. R., Faraldo, M. L., Ferrero, C., deDurana, J. L., & Fioretti, M. E. (2008). Efecto de la época de siembra y el genotipo sobre el rendimiento de trigo y sus componentes en el oeste de la región semiárida pampeana central. VII Congreso Nacional de Trigo. Santa Rosa, La Pampa, Argentina.

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in plant­breeding programme. Australian Journal of Agricultural Research, 14, 742-­754.

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29, 897­-907.

Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studies in short­season maize. 1. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58, 1029­-1034.

Goyal, A., Beres, B. L., Randhawa, H. S., Navabi, A., Salmon, D. F, & Eudes, F. (2011). Yield stability analysis of broadly adaptive triticale germplasm in southern and central Alberta, Canada, for industrial end­use suitability. Canadian Journal of Plant Science, 91, 125­-135.

Hawkesford, M. J., Araus, J. L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J., & Parry, M. A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security, 2, 34-­48.

Hede, A. R. (2000). A new approach to triticale improvement. En: Research highlight of the CIMMYT wheat program, 1999­2000. p. 21-­26.

León, H. C. & Becker, C. (1988). Repeatability of some statistical measures of phenotypic stability correlations between single year results and multi year’s results. Plant Breeding, 100, 137-­142.

Lin, C. S., & Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68, 193­-198.

Lin, C. S., Binns, M. R. & Lefkovitch, L. P. (1986). Stability analysis: where do we stand?. Crop Science, 26, 894-­900.

Martre, P., Quilot­Turion, B., Luquet, D., Ould­Sidi Memmah, M., Chenu, K. & Debaeke, P. (2015). Model­assisted phenotyping and ideotype design. Crop Physiology. https://www.doi.org/10.1016/B978­0­12­417104­6.00013­3

Petersen, R. G. (1994). Agricultural field experiments. Design and analysis. New York, United States: Marcel Dekker, Inc.

Pimentel Gomes, F. (1978). Curso de estadística experimental. Buenos Aires, Argentina: Hemisferio Sur.

Purchase, J. L. (1997). Parametric analysis to describe G×A interaction and yield stability in winter wheat. (Ph.D. Thesis). Dep. of Agronomy, Faculty of Agriculture, Univ. of the Orange Free Stage, Bloemfontein, South Africa.

Purchase, J. L., Hatting, H., & Vandeventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.). In South Africa: II. Stability analysis of yield performance. South African Journal Plant Soil, 17, 101-­107.

Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non­stress environment. Crop Science, 21, 943­-946.

Sadras, V. O., & Richards, R. A. (2014). Improvement of crop yield in dry environments: benchmarks, levels of organization and the role of nitrogen. Journal of the Society of Experimental Botany, 65, 1981­-1995.

Santana, J. C. F., Cavalcanti, F. B., & Dos Santos, E. O. (1983). Parâmetros de estabilidade na comparação de cultivares de algodoeiro herbáceo. Pesquisa Agropecuária Brasileira, 18, 261-­267

Semenov, M.A., Stratonovitch, P., Alghabari, F., & Gooding, M. J. (2014). Adapting wheat in Europe for climate change. Journal of Cereal Science, 59, 245−256.

Shukla, G. K. (1972). Some statistical aspects of partitioning genotype­environment components of variability. Heredity, 29, 237-­245.

Singh, A. G., Saini, L., Saini, H. & Sharma, A. K. (2017). Estimation of stability parameters for seed yield and its components in triticale and wheat genotypes under optimum and stress environments. International J. Chemical Studies, 5, 708­-712.

Snedecor, G. W. & Cochran, W. G. (1980). Statistical methods. 7th ed. Iowa, United States: State University Press.

Soil Survey Staff. (2014). Claves para la Taxonomía de Suelos. Cap. 12: Molisoles. Dpto. Agric. de USA Serv. Conservación Rec. Nat. (12nd ed.), USDA

Solomon, T., Shewaye, Y., Zegeye, H., Asnake, D., Tadesse, Z., & Girma, B. (2018). Performance evaluation of advanced bread wheat genotypes for yield stability using the AMMI stability model. Journal of agricultural research, 3, 1­7.

Steel, R.G.D. & Torrie, J. H. 1989. Bioestadística: principios y procedimientos. México D.F.: Mc Graw­Hill/Interamericana.

Temesgen, T., Keneni, G., Sefera, T., & Jarso, M. (2015). Yield stability and relationships among stability parameters in faba bean (Vicia fava L.) genotypes. The Crop Journal, 3, 258-­268.

Ugarte, C., Calderini, D. F., & Slafer, G. A. 2007. Grain weight and grain number responsiveness to pre anthesis temperature in wheat, barley and triticale. Field Crops Research, 100, 240­-248.

Vergara, G. T., y Casagrande, G. A. (2012). Estadísticas agroclimáticas de la Facultad de Agronomía, Santa Rosa, La Pampa, Argentina. Revista de la Facultad de Agronomía UNLPam, 22, 1­78.

Villegas, D., Casadesus, J., Atienza, S., Martos, V., Maalouf, F., Karam, F., Aranjuelo, I., & Nogues, S. (2010). Tritordeum, wheat and triticale yield components under multi­local Mediterranean drought conditions. Field Crops Research, 116, 68­-74.

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype­by­ environment data. Crop Science, 47, 641­-653.

Yates, F., & Cochran, W. G. 1938. The analysis of groups of experiments. The Journal of Agricultural Science, 28, 556­-580.

Yau, S. K., & Hamblin, J. (1994). Relative yield as a measure of entry performance in variable environments. Crop Science, 34, 813-­817.

Zadoks, J.C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415­-421.

Zhang, H., Berger, J. D., & Herrmann, C. (2017). Yield stability and adaptability of canola (Brassica napus L.) in multiple environment trials. Euphytica, 213(155), 1­21.

Zobel, R.W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of yield trial. Agronomy Journal, 80, 388-­393.

Descargas

Publicado

2019-10-02

Número

Sección

Artículos Científicos y Técnicos