Temporal and spatial immunolocalization of osteopontin in the repair of orthopaedic bone defects treated with demineralized bone matrix / Inmunolocalización temporal y espacial de osteopontina en la reparación de defectos óseos ortopédicos tratados con

  • Santiago Andrés Audisio Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Pablo Guillermo Vaquero Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Edgardo Cesar Verna Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Andrea Cristofolini Universidad Nacional de Rio Cuarto. Cordoba
  • Cecilia Merkis Universidad Nacional de Rio Cuarto. Cordoba

DOI:

https://doi.org/10.19137/cienvet-201921104

Keywords:

Rabbit, bone, osteopontin, inmunomarcation, demineralized bone matrix

Abstract

Osteopontin (OPN) is the most abundant non-collagen protein in the bone matrix, where it fulfils the function of cellular adhesion and biomineralization. In the present work, the authors report the temporal and spatial localization of OPN during the repair of experimental orthopaedic bone defects treated with demineralized bone matrix (DBM) processed by the authors. 30 rabbits were used, which were given an orthopaedic bone defect of critical size in one of the radiuses, which was filled with DBM. The rabbits were euthanized in groups of 5 individuals at days 7, 15, 21, 30, 60 and 150. Histological cuts were immunomarked to establish the spatial and temporal immunomarcation of OPN. The histological cuts were observed with an optic microscope with which histological images were captured and analysed with the ImageJ software. The image analysis allowed the authors to establish the optic density (OD) and the integrated optic density (IOD). The data was analysed with the ANOVA and Fischer LSD tests. At day 7, the presence of OPN was observed only in the DBM particles, where the OD was 0.08 and the IOD was 1.64; at day 15, OPN marked different sites of collagen condensations and cells contained in the interior of the matrix. In this period the OD was 0.096 and the IOD, 9.26. At days 21 and 30, the OPN immunosignalled osteocytes, osteoblasts, osteoclasts and hypertrophic chondrocytes in the bone trabeculae adjacent   to the ossification zones. At day 21 the OD was 0.17 and IOD 6.22. At day 30, the OD was 0.14 and the IOD 2.52. At days 60 and 150, OPN was evenly distributed in the new bone matrix with an OD: 0.10 and IOD: 0.48, and OD: 0.35 and IOD: 3.80, respectively. The OD and IOD showed significant differences (p<=0.05) between days 7, 15, 21 and 30; and there was no difference at days 60 and 150 (p=0.05). OPN was found in the DBM particles: it increased the optic densities at day 15 and it diminished at day 60, after which it increased the OD and IOD again until day 150. It was established that the OPN immunoexpressed during the repair process in indifferentiated cells, osteoprogenitor chondrocytes and osteoblasts. The variation of OD and IOD allowed the authors to establish that the greatest degree of immunoexpression of OPN was at day 15 after repair initiated. On the other hand, the increase registered between days 60 and 150 post treatment was due to the biomineralization of the bone matrix.

Downloads

Download data is not yet available.

Author Biographies

Santiago Andrés Audisio, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

 

Profesor Adjunto Cátedra Técnica y Patología Quirúrgica. Especialista en Ciencias Clínicas (FAV-UNRC). Doctor en Ciencia, Tecnología e Innovación Agropecuaria (FAV-UNRC). Área de conocimiento de las afecciones de osteoarticulares y cirugía ortopédica y traumatológica veterinaria

 

Pablo Guillermo Vaquero, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Jefe de Trabajos Prácticos Cátedra Técnica y Patología Quirúrgica. Especialista en Educación en Cs Veterinarias (FCV-UNLPam), doctorando en Ciencias Veterinarias (FCV-UNLP). Área de conocimiento de las afecciones osteoarticulares y cirugía ortopédica y traumatológica veterinaria.

 

References

Urist, M. R. Bone formation by autoinduction. Science.1965; 150:893-899.

Colnot, C., D. M. Romero, S. Huang & J. A. Helms.Mechanism of action of demineralized bone matrix in the repair of cortical bone defects. Clinical Orthopaedic Related Research. 2005; 435:69-78.

Eppley, B. L., W. S. Pietrzak & M. W. Blanton. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. Journal of Craniofacial Surgery. 2005; 16:981-989.

McKee, M. D., C. M. Farach, W. T. Butler, P. V. Hauschka & A. Nanci. Ultrastructural

immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma

(albumin and alpha 2HSglycoprotein) proteins in rat bone. Journal of Bone Mineral Research. 1993; 8:485–496.

Weber, G. F., S. Ashkar, Glimcher, M. J. & H. Cantor. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996; 271:509-512.

Chellaniah, M. A, K. A. Hruska. The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcified Tissue International. 2003; 72:197–205.

Zhu, B., K. Suzuki, H. A. Goldberg, S. R. Rittling, D. T. Denhardt, C. A. McCulloch & J. Sodek. Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cell Physiology. 2004; 198: 155–167.

Uemura, T., A. Nemoto, Y. K. Liu, H. Kojima, J. Dong, T. Yabe, T. Yoshikawa, H. A. Ohgushi, T. Ushida & T. Tateishia. Osteopontin involvement in bone remodeling and its effects on in vivo osteogenic potential of bone marrow-derived osteoblasts/porous hydroxyapatite constructs. Materials Science and Engineering. 2001; 17:33–36

Sodek, J., B. Ganss & M. D. McKee. Osteopontin. Critical Review in Oral Biology and Medicine. 2000; 11: 279–303.

Lesley, J., R. Hyman, P.W. Kincade. Hyaluronan binding by cell surface CD44. Journal of Biological Chemistry. 2000; 275:26967-26975.

Hollinger, J. O. & J. C. Kleinschmidt. The critical size defect as an experimental model to test bone repair methods. Journal of Craniofacial Surgery. 1990; 1:60-68

Audisio, S. A., P. G. Vaquero, P. A. Torres, E. C., L. N. Ocampo, V. Ratusnu, A. L., Cristofolini, C. I. Merkis. Obtención, caracterización y almacenamiento de matriz ósea desmineralizada. Revista de Medicina Veterinaria. 2014; 95:27-34.

Vasconcellos, A., C. Cisternas & M. Paredes. Estudio inmunohistoquímico comparativo del receptor de estrógeno en tejido endometrial de ovejas razas Texel y Araucana. International Journal of Morphology. 2014; 32:1120-1124

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M Tablada & C.W. Robledo. InfoStat versión Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2010.

Yasui, N., M. Sato, T. Ochi, T. Kimura, H. Kawahata, Y. Kitamura & S. Nomura. Three modes of ossification during distraction osteogenesis in the rat. Journal of Bone and Joint Surgery.1997; 79,:824-830

Radomisli, T. E., D. C. Moore, H. J. Barrach, H. S. Keeping & M. G. Ehrlich.. Weight-bearing alters the expression of collagen types I and II, BMP 2/4 and osteocalcin in the early stages of distraction osteogenesis. Journal of Orthopedic Research. 2001; 19:1049-1056

Jang, J. H. & Kim J.H. Improved cellular response of osteoblast cells using recombinant human osteopontin protein produced by Escherichia coli. Biotechnology Letter. 2005; 27:1767–1770.

Lian, J. B., M. D. McKee MD, Todd AM, Gerstenfeld LC. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. Journal of Cellular Biochemistry. 1993; 52:206–219

Silbermann, M., D. Lewinson, H. Gonen, M. A. Lizarbe & K. von der Mark K. In vitro transformation of chondroprogenitor cells into osteoblasts and the formation of new membrane bone. The Anatomy Record. 1983; 206: 373-383.

Moskalewski, S. & J. Malejejcyk.. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte – bone cell differentiation. Development. 1989; 107: 473-480

Thesingh, C. W., Groot, C. G. & A. M. Wassenaar.Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones, induced by co-cultured cerebrum. Bone and Mineral Research.1991; 12:5-40.

Descalzi Cancedda, F., C. Gentili, P. Manduca & R. Cancedda. Hypertrophic chondrocytes undergo further differentiation in culture. Journal of Cellular Biology. 1992; 117:427-435

Enishi, T., K. Yukata, M. Takahashi, R. Sato, K. Sairyo K, N. Yasui. Hypertrophic chondrocytes in the rabbit growth plate can proliferate and differentiate into osteogenic cells when capillary invasion is interposed by a membrane filter. 2014; PLoS ONE 9, e104638

Yang, G., L. Zhu, N. Hou, Y. Lan, X. M. XM, B. Zhou, Y. Teng & X. Yang. Osteogenic fate of hypertrophic chondrocytes. Cell Research. 2014a;24:1266-1269.

Yang, L., K. Y. Tsang, H. C. Tang, D. Chan & K. S. Cheah.. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of National Academy Science. 2014b; 111:12097-12102.

Zhou, X., K. von der Mark, S. Henry, W. Norton, H. Adams, B. de Crombrugghe..

Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genetics. 2014; 10, e1004820

Jung, P., M. Gebhardt, S. Golovchenko, F. Perez-Branguli, T. Hattori, C. Hartmann, X. Zhou, B. deCrombrugghe, M. Stock, H. Schneider & K. von der Mark. Dual pathways to endochondral osteoblasts: a novel chondrocytederived osteoprogenitor cell identified in hypertrophic cartilage. Biology Open. 2015; 4,608–621.

Kawakami, T. Immunohistochemistry of BMP induced heterotopic osteogenesis. Journal of Hard Tissue Biology.2001; 10:73-76.

Published

2019-06-24

How to Cite

Audisio, S. A., Vaquero, P. G., Verna, E. C., Cristofolini, A., & Merkis, C. (2019). Temporal and spatial immunolocalization of osteopontin in the repair of orthopaedic bone defects treated with demineralized bone matrix / Inmunolocalización temporal y espacial de osteopontina en la reparación de defectos óseos ortopédicos tratados con. Ciencia Veterinaria, 21(1), 53–68. https://doi.org/10.19137/cienvet-201921104

Issue

Section

Artículos de Investigación