Evaluación de la Sinergia de la Actividad Antimicrobiana de Cepas de Bacterias Lácticas Contra Patógenos

DOI:

https://doi.org/10.19137/cienvet202325101

Palabras clave:

Español, Probióticos, Sinergia, Lactobacillus, Actividad Antimicrobiana

Resumen

Una de las propiedades biológicas más notables atribuidas a los probióticos es su actividad antimicrobiana. La investigación sobre probióticos se ha centrado tradicionalmente en cepas individuales,  sin embargo, las combinaciones de cepas probióticas pueden tener un espectro de acción más amplio o efectos sinérgicos, potenciando su acción protectora. El objetivo de esta investigación fue evaluar efecto sinérgico de cepas de bacterias lácticas aisladas de leche materna de diferentes orígenes sobre la inhibición de patógenos bacterianos de importancia en medicina humana y animal. Se emplearon combinaciones de siete cepas de bacterias lácticas juntadas en pares y se estudió su efecto inhibitorio sobre los patógenos bacterianos Escherichia coli ATCC 25922, Salmonella enterica ATCC 13076, Klebsiella pneumoniae ATCC 13883, y Acinetobacter baumannii ATCC 19606 y una cepa de E. coli enterohemorrágica. La combinación de las cepas TUCO-5E + TUCO-L2 fue la más efectiva en la inhibición del desarrollo de todos los patógenos evaluados, destacando su efecto sobre K. pneumoniae y A. baumannii. Cinco de las combinaciones evaluadas mostraron efectos sinérgicos en la inhibición de patógenos extraintestinales: a) se observó efecto sinérgico entre las cepas TUCO-5E + TUCO-L2 para la inhibición de K. pneumoniae y A. baumannii, b) efecto sinérgico para TUCO-5E + TUCO-2, TUCO-5 + TUCO-2, y TUCO-3 + TUCO-17 sobre K. pneumoniae y, c) efecto sinérgico para TUCO-16 + TUCO-17 sobre A. baumannii. Las combinaciones que mostraron sinergia en el efecto antimicrobiano son buenas candidatas para el desarrollo de probióticos multicepa para la prevención y el tratamiento de infecciones bacterianas específicas

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ana Isabel Pino Binimelis, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile

Médico veterinaria. Magíster en Calidad e Inocuidad de Alimentos de Origen Animal. Laboratorio de Microbiología de Alimentos, Universidad de Concepción, Campus Chillán, Chile

Leonardo Albarracín, CERELA-CONICET, Tucumán, Argentina.

Licenciado en Informática y Dr. en Ciencias Biológicas de la Universidad Nacional de Tucumán (UNT). Becario post doctoral CONICET. Docente de la Facultad de Ciencias Exactas y Tecnología – UNT

Natalie Parra, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

Posdoctorado en Ciencias, Universidad de Concepción

Jorge Roberto Toledo, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

Profesor Titular Universidad de Concepción, Doctor en Ciencias Biológicas

Julio Villena, CERELA-CONICET, Tucumán, Argentina.

Doctor en Bioquímica, especialista en Inmunología. Investigador Independiente del CONICET en el Laboratorio de Inmunobiotecnología de CERELA (Tucumán-Argentina). Estudios del efecto de microorganismos beneficiosos sobre la inmunidad contra infecciones. Inmunología Molecular. Genómica

Sandra Rayén Quilodrán-Vega, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile

Bioquímica y Doctora en Microbiología, Profesora asistente, jefa del Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias, Universidad de Concepción, Campus Chillán, Chile. Estudios de caracterización microbiológica de cepas probióticas aisladas desde leche, vegetales y otras matrices.

Citas

Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. Probiotic approach to prevent antibiotic resistance. Annals of Medicine. 2016; 48(4):246–255. Doi:10.3109/07853890.2016.1161232

Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019;

(4):323 – 327. Doi:10.1016/j.tim.2018.12.010

Food and Agriculture Organization & World Healt Organization (FAO / WHO). Probiotics in food: Health and nutricional properties and

guidelines for evaluation. FAO Food and Nutritional Paper 85 [Internet] 2006 [Consultado 15 Ago 2022] Disponible en: http://www.fao.org/3/a0512e/a0512e.pdf

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014: 11:506-514. Doi:10.1038/nrgastro.2014.66

Reid G, Gadir AA, Dhir R. Probiotics: reiterating what they are and what they are not. Front Microbiol. 2019; 10:424. Doi:10.3389/fmicb.2019.00424

Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, et al. Criteria to qualify microorganisms as “Probiotic” in foods and dietary supplements. Front Microbiol. 2020; 11. Doi:10.3389/fmicb.2020.01662

Forssten SD, Laitila A, Maukonen J, Ouwehand AC. Probiotic triangle of success; strain production, clinical studies and product development. FEMS Microbiol Lett. 2020; 367(19). Doi:10.1093/femsle/fnaa167

Fontana L, Bermudez-Brito M, Plaza-Diaz J, Muñoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. B J Nutr. 2013; 109(S2): S35–S50. Doi:10.1017/S0007114512004011

Jugan MC, Rudinsky AJ, Parker VJ, Gilor C. Use of probiotics in small animal veterinary medicine. J Am Vet Med. 2017; 250(5): 519–528. Doi:10.2460/javma.250.5.519

King S, Tancredi D, Lenoir-Wijnkoop I, Gould K, Vann H, Connors G, et al. Does probiotic consumption reduce antibiotic utilization for common acute infections? A systematic review and meta-analysis. Eur J Public Health. 2019; 29(3): 494-499. Doi:10.1093/eurpub/cky185

Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017; 9(9). Doi:10.3390/nu9091021

Mathipa MG, Thantsha MS. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut pathog. 2017; 9: 28. Doi:10.1186/s13099-017-0178-9

McFarland LV, Huang Y, Wang L, Malfertheiner P. Systematic review andmeta-analysis: multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United Eur Gastroenterol J. 2016; 4(4): 546–561. Doi: 10.1177/2050640615617358

Sornplang P, Piyadeatsoontorn S. Probiotic isolates from unconventional sources: a review. J Anim Sci Technol. 2016; 58(1). Doi:10.1186/s40781- 016-0108-2

Zielińska D, Kolożyn-Krajewska D. Food-origin lactic acid bacteria may exhibit probiotic properties: review. BioMed Res Int. 2018. Doi:10.1155/2018/5063185

Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, et al. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol Res. 2013; 69(1): 1–10. Doi:10.1016/j.phrs.2012.09.001

Makete G, Aiyegoro OA, Thantsha MS. Isolation, identification and screening of potential probiotic bacteria in milk from South African Saanen goats. Probiotics Antimicrob Proteins. 2016; 9(3): 246–254. Doi:10.1007/s12602-016-9247-5

Reuben RC, Roy PC, Sarkar SL, Rubayet Ul Alam A, Jahid IK. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J dairy sci. 2020; 103(2): 1223–1237. Doi: 10.3168/jds.2019-17092

Martín R, Delgado S, Maldonado A, Jiménez E, Olivares M, Fernández L, et al. Isolation of lactobacilli from sow milk and evaluation of their probiotic potential. J Dairy Res. 2009; 76: 418–425. Doi:10.1017/S0022029909990124

Quilodrán-Vega SR, Villena J, Valdebenito J, Salas MJ, Parra C, Ruiz A, et al. Isolation of lactic acid bacteria from swine milk and characterization of potential probiotic strains with antagonistic effects against swineassociated gastrointestinal pathogens. Can J Microbiol. 2016; 62(6): 514–524. Doi:10.1139/cjm-2015-0811

Martín R, Olivares M, Pérez M, Xaus J, Torre C, Fernández L, et al. Identification and evaluation of the probiotic potential of lactobacilli isolated from canine milk. Vet J. 2010; 185(2): 193–198. Doi:10.1016/j.tvjl.2009.04.014

Fernandez L, Martínez R, Cruz M, Arroyo R, Rodríguez JM. Characterization of Lactobacillus rhamnosus MP01 and Lactobacillus plantarum MP02 and assessment of their potential for the prevention of gastrointestinal infections in an experimental canine model. Front Microbiol. 2019; 10. Doi:10.3389/fmicb.2019.01117

Quilodrán-Vega S, Albarracin L, Mansilla M, Arce L, Zhou B, Islam MA, et al. Functional and genomic characterization of Ligilactobacillus salivarius TUCO-L2 isolated from Lama glama milk: a promising immunobiotic strain to combat infections. Front Microbiol. 2020; 11: 608752. Doi:10.3389/fmicb.2020.608752

Forssten SD, Ouwehand AC. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products. Microb Ecol Health Dis. 2017; 28(1). Doi:10.1080/16512235.2017.1378061

Ouwehand AC, Invernici MM, Furlaneto FA, Messora MR. Effectiveness of multi-strain versus single-strain probiotics: current status and recommendations for the future. J Clin Gastroenterol. 2018; 52(S1): S35 – S40. doi:10.1097/mcg.0000000000001052

Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC. Monostrain, multistrain and multispecies probiotics - A comparison of functionality and efficacy. Int J Food Microbiol. 2004; 96(3): 219 - 233. Doi:10.1016/j.ijfoodmicro.2004.05.012

Chapman CM, Gibson GR, Rowland I. Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr. 2011; 50(1): 1– 17. Doi:10.1007/s00394-010-0166-z

Gómez-Gallego C, Junnila J, Männikkö S, Hämeenoja P, Valtonen E, Salminen S, et al. A canine-specific probiotic product in treating acute or intermittent diarrhea in dogs: a double-blind placebo-controlled efficacy study. Vet Microbiol. 2016; 197: 122–128. Doi:10.1016/j.vetmic.2016.11.015

McFarland LV, Ship N, Auclair J, Millette M. Primary prevention of Clostridium difficile infections with a specific probiotic combining Lactobacillus acidophilus, L. casei, and L. rhamnosus strains: assessing the

evidence. J Hosp Infect. 2018; 99(4): 443 – 452. Doi:10.1016/j.jhin.2018.04.017

Collado MC, Meriluoto J, Salminen S. Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus?, J Dairy Sci. 2007; 90(6): 2710–2716. Doi:10.3168/jds.2006-456

Collado MC, Meriluoto J, Salminen S. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Int. 2007; 40(5): 629 – 636. Doi:10.1016/j.foodres.2006.11.007

Collado MC, Grześkowiak Ł, Salminen S. Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol. 2007; 55(3): 260 – 265. Doi:10.1007/s00284- 007-0144-8

Scalfaro C, Iacobino A, Nardis C, Franciosa G. Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens. FEMS Microbiol Lett. 2017; 364(7): 1 – 6. Doi:10.1093/femsle/fnx064, 46 - 42

Fijan S, Šulc D, Steyer A. Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. Int J Environ Res Public Health. 2018; 15(7). doi:10.3390/ijerph15071539

Altarugio R, Vellano IH, Moraes AC, Milbradt EL, Andreatti-Filho RL, Guimarães-Okamoto PT, et al. In vitro probiotic selection and characterization of Lactobacillus spp. isolated from healthy domesticated Turkeys. J Appl Poult Res. 2017; 27(1): 81–91. doi:10.3382/japr/pfx045

Jimenez-Trigos E, Toquet M, Barba M, Gómez-Martín Á, Quereda JJ, Bataller E. Search of antimicrobial lactic acid bacteria from Salmonellanegative dogs. BMC Vet Res. 2022;18(1): 1 – 12. doi:10.1186/s12917- 021-03070-x

Chapman CM, Gibson GR., Rowland I. In vitro evaluation of single- and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012; 18(4): 405 – 413.

Doi:10.1016/j.anaerobe.2012.05.004

Shokryazdan P, Sieo CC, Kalavathy R, Liang JB, Alitheen NB, Faseleh Jahromi M, et al. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res Int. 2014; 927268. doi: 10.1155/2014/927268

Amstrong RA, Hilton AC. Statistical analysis in microbiology: Statnotes. USA: Wiley-Blackwell; 2011.

Lorowitz W, Saxton E, Sondossi M, Nakaoka K. Integrating statistics with a microbiology laboratory activity. Microbiology education. 2005; 6: 14– 19.

World Healt Organization (WHO). Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics. Geneva, Switzerland [Imternet] 2017 [Consultado 20 Mar

Disponible en: https://www.who.int/medicines/publications/WHO-PPLShort_ Summary_25Feb-ET_NM_WHO.pdf

Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe. 2012; 18(5): 530-538. doi: 10.1016/j.anaerobe.2012.08.004

Chapman CM, Gibson GR, Todd S, Rowland I. Comparative in vitro inhibition of urinary tract pathogens by single- and multi-strain probiotics. Eur J Nutr. 2013; 52(6): 1669–1677. Doi:10.1007/s00394- 013-0501-2

Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of recent therapeutic applications and the infection strategies of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol. 2021; 11: 614963. Doi:10.3389/fcimb.2021.614963

Kim J-S, Lee M-S, Kim JH. Recent Updates on outbreaks of Shiga Toxin- Producing Escherichia coli and its potential reservoirs. Front Cell Infect Microbiol. 2020; 10:273. doi: 10.3389/fcimb.2020.00273, 56

Fernández J, Guerra B, Rodicio MR. Resistance to Carbapenems in Non- Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet Sci. 2018; 5(2): 40. doi:10.3390/vetsci5020040

Retamal P, Fresno M, Dougnac C, Gutierrez S, Gornall V, Vidal R, et al. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile. Front Microbiol. 2015; 6:464. doi: 10.3389/fmicb.2015.00464

Yang F, Deng B, Liao W, Wang P, Chen P, Wei J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist. 2019; 12:2729-2737. doi: 10.2147/IDR.S219155.

Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020; 17(17):6278. doi:10.3390/ijerph171762

Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018; 11: 1249– 1260. Doi: 10.2147/IDR.S166750

Van der Kolk JH, Endimiani A, Graubner C, Gerber V, Perreten V. Acinetobacter in Veterinary Medicine with emphasis on A. baumannii. J Glob Antimicrob Resist. 2019;16: 59 – 71.

Fijan S. Antimicrobial effect of probiotics against common pathogens. En: Rao V, Rao LG, editors. Probiotics and Prebiotics in Human Nutrition and Health. IntechOpen. 2016. p.191-211. Doi:10.5772/63141

Halder D, Mandal M, Chatterjee SS, Pal, NK, Mandal S. Indigenous probiotic Lactobacillus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedicines. 2017; 5(2). doi: 10.3390/biomedicines5020031

imagen ilustrativa

Publicado

2023-03-06

Cómo citar

Pino Binimelis, A. I. ., Albarracín, L. ., Parra, N., Toledo, J. R., Villena, J. ., & Quilodrán-Vega, S. R. . (2023). Evaluación de la Sinergia de la Actividad Antimicrobiana de Cepas de Bacterias Lácticas Contra Patógenos. Ciencia Veterinaria, 25(1), 1–22. https://doi.org/10.19137/cienvet202325101

Número

Sección

Artículos de Investigación