Association study of the polymorphism of the BoLA DQA1 class II gene with resistence/susceptibility to mastitis in Holstein cattle from the province of La Pampa

  • Laura Rosana Baltian Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • María Verónica Ripoli Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias
  • Guillermo Giovambattista Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias

DOI:

https://doi.org/10.19137/cienvet202224101

Keywords:

BoLA-DQA1, resistance, susceptibility, mastitis, somatic cell

Abstract

Mastitis is a frecuently disease of dairy cattle that leads to a decrease in production and an increase in health costs. This disease can be evaluated
through the number of white blood cells per milliliter of milk, which is known as somatic cell count (CCS). Alleles of Bovine Leukocyte
Antigen (BoLA) genes were associated with resistance and susceptibility to infectious diseases. The objective of this work was to study the
polymorphism of the class II molecules of BoLA-DQA1 and their association with resistance/susceptibility to mastitis measured through the
CCS in milk in Holstein cattle from the province of La Pampa. The population was divided into: 1) case group with high CCS and presence
of mastitis (≥ 250,000 cel/ml, susceptible) and 2) control group with low CCS (<250,000 cel/ml, resistant). BoLA-DQA1 polymorphisms were
genotyped in sixty animals by PCR-RFLP and PCR-SBT. Woolf-Haldane’s Fisher and Odds Ratio (OR) exact test were used to study the association
between CCS and allelic variants. 16 alleles of the BoLA-DQA1gene were detected and the BoLA-DQA1*0101 allele showed an OR of 4 (p = 0.58).
This finding highlights the importance of BoLA-DQA1 alleles for selection of resistant animals to infectious diseases.

Downloads

Download data is not yet available.

Author Biographies

Laura Rosana Baltian, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Formación: Lic. En Biología (orientación Zoología). FCN y M, UNLP Especialista en Docencia Universitaria en Ciencias Veterinarias. FCV, UNLPam Dra. En Ciencias Veterinarias. FCV, UNLP.
Actividad Académica: Profesora Adjunta. Regular. Cátedra de Genética y Mejoramiento Animal. FCV, UNLPam

María Verónica Ripoli, Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias

Formación: Lic. en Biología (orientación Zoología). FCN y M, UNLP Dra. en Ciencias Naturales. FCN y M, UNLP
Actividad Académica

Guillermo Giovambattista, Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias

Formación: Lic. en Biología (orientación Zoología). FCN y M, UNLP
Dr. en Ciencias Naturales. FCN y M, UNLP
Actividad Académica. Profesor Adjunto regular. Cátedras de Genética general y de Genética Forense Veterinaria. FCV, UNLP. 
Investigador Principal del CONICET.

References

Quevedo W. Recuento de células somáticas (rsc), como indicador en la resistencia de la mastitis bovina. Revista Ciencia, Tecnología e Innovación

[Internet]. 2018; Available from: http://www.scielo.org.bo/scielo. php?pid=S2225-87872018000100005&script=sci_arttext

Kerr DE, Wellnitz O. Mammary expression of new genes to combat mastitis. J Anim Sci. 2003; 81 Suppl 3:38–47.

Blum SE, Heller ED, Leitner G. Long term effects of Escherichia coli mastitis. Vet J. 2014

Jul; 201(1):72–7.

Sharif S, Mallard BA, Wilkie BN, Sargeant JM, Scott HM, Dekkers JC, et al. Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim Genet. 1998 Jun; 29(3):185–93.

Ariznabarreta A, Gonzalo C, San Primitivo F. Microbiological quality and somatic cell count of ewe milk with special reference to staphylococci. J Dairy Sci. 2002 Jun; 85(6):1370–5.

Park YH, Joo YS, Park JY, Moon JS, Kim SH, Kwon NH, et al. Characterization of lymphocyte subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows. J Vet Sci. 2004 Mar; 5(1):29–39.

Bochantin K, Bewley JM. 0042 The importance of mastitis management practices in maintaining milk quality in the United States. J Anim Sci. 2016; 94(suppl_5):19–20.

Guimarães JLB, Brito MAV, Lange CC, Silva MR, Ribeiro JB, Mendonça LC, et al. Estimate of the economic impact of mastitis: A case study in a Holstein dairy herd under tropical conditions [Internet]. Vol. 142, Preventive Veterinary Medicine. 2017. p. 46–50. Available from: http://dx.doi.org/10.1016/j.prevetmed.2017.04.011

Bedolla CC, de León MP. Pérdidas económicas ocasionadas por la mastitis bovina en la industria lechera. REDVET - Revista Electrónica de Veterinaria. 2008; 9(4):1–26.

Ting JP-Y, Trowsdale J. Genetic control of MHC class II expression. Cell. 2002 Apr; 109 Suppl: S21–33.

Rupp R, Hernandez A, Mallard BA. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci. 2007 Feb;90(2):1029–38.

Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–9. Available from: http://dx.doi.org/10.1038/364033a0

Tellam RL, Lemay DG, Van Tassell CP, Lewin HA, Worley KC, Elsik CG. Unlocking the bovine genome. BMC Genomics. 2009;10:193. Available from: http://dx.doi. org/10.1186/1471-2164-10-193

Takeshima S-N, Aida Y. Structure, function and disease susceptibility of the bovine major histocompatibility complex. Anim Sci J. 2006 Apr; 77(2):138–50.

Schwab AE, Geary TG, Baillargeon P, Schwab AJ, Fecteau G. Association of BoLA DRB3 and DQA1 alleles susceptible to Neospora caninum and reproductive outcome in Quebec Holstein cattle. Vet Parasitol. 2009 Oct 28; 165(1):136–40.

Baltian LR, Ripoli MV, Sanfilippo S, Takeshima SN, G. G. Association between Bo- LA-DRB3 and somatic cell count in Holstein cattle from Argentina. Mol Biol Rep. 2012 39 (7):7215-7220 Available from: https://link.springer.com/article/10.1007/ s11033-012-1526-y

Baltian LR, Follmer AV, Peratta DL, Schmidt EE, Severini RA, Borrego C, et al. Polimorfismos del exón 2 del gen BoLA-DRB3 asociados con resistencia/susceptibilidad a leucosis en ganado Holstein de La Pampa/Polymorphisms of BoLA-DRB3 gene and its association with resistance/susceptibility to Leukosis in Holstein cattle from La. Ciencia Veterinaria. 2016; 18(1):9–27.

Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima S-N, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol. 2017 Feb; 162(2):425–37.

Miyasaka T, Takeshima SN, Sentsui H, Aida Y. Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese Black and Holstein cattle in Japan. J Dairy Sci. 2012;95 (1):420-431 Available from: https://www.sciencedirect. com/science/article/pii/S0022030211007132

EBI Web Services. IPD-MHC Database [Internet]. [cited 2021 May 12]. Available from: https://www.ebi.ac.uk/ipd/mhc/

Glass EJ, Oliver RA, Russell GC. Duplicated DQ haplotypes increase the complexity of restriction element usage in cattle. J Immunol. 2000 Jul 1; 165(1):134–138.

Gelhaus A, Förster B, Wippern C, Horstmann RD. Evidence for an additional cattle DQA locus, BoLA-DQA5. Immunogenetics. 1999 Apr;49(4):321–7.

Russell GC, Gallagher A, Craigmile S, Glass EJ. Characterization of cattle cDNA sequences from two DQA loci. Immunogenetics. 1997;45(6):455–8.

Takeshima S, Aida Y. Polymorphism and disease resistance of bovine major histocompatibility complex. J Animal Gen. 2007;35:51–64. Available from: http://dx.doi. org/10.5924/abgri2000.35.51

Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, et al. Detection of Quantitative Trait Loci Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle. J Dairy Sc. 2004;87:468–75. Available from: http://dx.doi. org/10.3168/jds.s0022-0302(04)73186-0

AIDA, Y. Influence of host genetic differences on leukemogenesis induced bovine leukemia virus. AIDS Res Hum Retroviruses. 2001; 17:S12.

Burbano M, Toro R, Montoya F, Ariza F, Tobón JI, Gallego J, et al. Caracterización del locus BoLA-DRB3 en ganado criollo colombiano y asociación con resistencia a enfermedades. Arch Zootec. 2005; 54(206):349–56.

Martinez ML, Machado MA, Nascimento CS, Silva MVGB, Teodoro RL, Furlong J, et al. Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet Mol Res. 2006 Aug 31; 5(3):513–24.

Juliarena MA, Poli M, Sala L, Ceriani C, Gutierrez S, Dolcini G, et al. Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Anim Genet. 2008 Aug; 39(4):432–8.

Panei CJ, Suzuki K, Echeverria MG, Serena MS, Metz GE, Gonzalez ET. Association of Bo- LA-DRB3.2 Alleles with Resistance and Susceptibility to Persistent Lymphocytosis in BLV Infected Cattle in Argentina. Int J Dairy Sci. 2009;4:123–8. Available from: http:// dx.doi.org/10.3923/ijds.2009.123.128

Dietz A B, Detilleux JC, Freeman A E, Kelley D H, Stabel JR, Kehrli M E. Genetic association of bovina lymphocyte antigen DRB3 alleles with immunological traits of Holstein cattle. J Dairy Sci. 1997; (80):400–5.

Kelm SC, Detilleux JC, Freeman AE, Kehrli ME Jr, Dietz AB, Fox LK, et al. Genetic association

between parameters of innate immunity and measures of mastitis in periparturient Holstein cattle. J Dairy Sci. 1997 Aug; 80(8):1767–75.

Zambrano JC., Echeverri JZ., López-Herrera A. Alelos del gen BoLA DRB3.2 están asociados con mastitis en vacas lechera. Rev Colom Cienc Pecu. 2011; 24(2):145–56.

Baltian LR., Rípoli MV., Giovambattista G. Determination of amino acid motifs present in the antigen-binding site of BoLA-DRB3 alleles in a Holstein population of La Pampa y su asociación con mastitis. Ciencia Veterinaria. 2014; 16: 9–27. Available from: http://dx.doi.org/10.19137/cienvet2014-1611

Chu MX, Ye SC, Qiao L, Wang JX, Feng T, Huang DW, et al. Polymorphism of exon 2 of BoLA-DRB3 gene and its relationship with somatic cell score in Beijing Holstein cows. Mol Biol Rep. 2012 Mar;39(3):2909–14.

National Mastitis Council - National Mastitis Council [Internet]. 2016 [cited 2021 May 15]. Available from: http://nmconline.org.

Takeshima S, Miki A, Kado M, Aida Y. Establishment of a sequence-based typing system for BoLA-DQA1 exon 2. Tissue Antigens. 2007 Feb;69(2):189–99.

WebCutter [Internet]. WebCutter. Available from: http://heimanlab.com/cut2.html

EMBL-EBI. The European Bioinformatics Institute < EMBL-EBI [Internet]. [cited 2021 May 14]. Available from: http://www.ebi.ac.uk/

Russell GC, Davies CJ, Andersson L, Mikko S, Ellis SA, Hensen EJ, et al. BoLA class II nucleotide sequences, 1996: report of the ISAG BoLA Nomenclature Committee. Animal Genetics. 1997;28:169–80. Available from: http://dx.doi. org/10.1111/j.1365-2052.1997.00107.x

Daum C, Tighe D, Philip L, Mihalkanin D, Spurrell C, Miller D, et al. The Joining of Competitors:

The Dual Operation of the ABI 3730xl and GE MegaBACE4500 DNA Sequence Analyzers at the DOE Joint Genome Institute. 2006 Feb 6 [cited 2021 May 16]; Available from: https://escholarship.org/uc/item/9hq0x9zp

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul; 89(3):583–90.

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564– 7. Available from:

http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x

Weir BS, Cockerham CC. ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION

STRUCTURE. Evolution. 1984 Nov; 38(6):1358–70.

Rousset F. genepop’007: a complete re-implementation of the genepop software for

Windows and Linux. Mol Ecol Resour. 2008 Jan; 8(1):103–6.

Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for

multiple alleles. Biometrics. 1992 Jun;48(2):361–72.

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–80.

Miltiadou D, Law AS, Russell GC. Establishment of a sequence-based typing system for

BoLA-DRB3 exon 2. Tissue Antigens. 2003 Jul;62(1):55–65.

Ripley BD. The R project in statistical computing. MSOR Connections The newsletter

of the LTSN Maths [Internet]. 2001; Available from: https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.449.6899&rep=rep1&type=pdf

Miyasaka T, Takeshima S-N, Matsumoto Y, Kobayashi N, Matsuhashi T, Miyazaki Y, et

al. The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of

Japanese Black and Holstein cattle in Japan. Gene. 2011 Feb 1;472(1-2):42–9.

Takeshima S, Chen S, Miki M, Kado M, Aida Y. Distribution and origin of bovine major histocompatibility

complex class II DQA1 genes in Japan. Tissue Antigens. 2008;72:195–

Available from: http://dx.doi.org/10.1111/j.1399-0039.2008.01092.x

Kułaj D, Pokorska J, Ormian M, Dusza M. Short Communication: New alleles at the Bo-

LA-DQA1 locus in Holstein–Fresian cattle. Can J Anim Sci. 2015 Jun;95(2):161–4.

Takeshima S-N, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly

associated with bovine major histocompatibility complex class II DRB3 polymorphism

than with DQA1 polymorphism in Holstein. Retrovirology, 2019; 16 (1):

p. 1-6. Available from: https://retrovirology.biomedcentral.com/articles/10.1186/

s12977-019-0476-z

Published

2022-03-07

How to Cite

Baltian, L. R. ., Ripoli, M. V., & Giovambattista, G. (2022). Association study of the polymorphism of the BoLA DQA1 class II gene with resistence/susceptibility to mastitis in Holstein cattle from the province of La Pampa. Ciencia Veterinaria, 24(1), 1–18. https://doi.org/10.19137/cienvet202224101

Issue

Section

Artículos de Investigación