Application of UVC light to sterilize parenteral solutions
DOI:
https://doi.org/10.19137/cienvet-201820201Keywords:
5 % dextrose solution, 0.9 % physiological solution, UVC light, sterilizationAbstract
One of the drawbacks that usually occurs when working in a veterinary hospital is the need to have a permanent stock of medicines and other health products, including large volumes of sterile parenteral solutions, which are widely used in the daily clinic. Replacement
fluids most frequently used are the solutions of dextrose 5 %, sodium chloride 0.9 % and Ringer lactate, among others. It is essential that the solutions to be administered are in sterile conditions. In that sense, short-wave ultraviolet light (UVC), non-ionizing radiation, is a powerful antibacterial agent that disinfects without altering the color, flavor, odor or pH of the sample. The objective of this work was to study the application of UVC radiation to sterilize parenteral solutions with refrigerated storage. We worked with 5 % dextrose solution and 0.9 % physiological solution separated in control samples, untreated, and treated with UVC light. The irradiation dose received by the samples was 3.4095 J/cm2. Subsequently, they were stored in temperature controlled refrigeration chambers at 4 °C for 7 days. It was observed for the case of the irradiated samples, that there was no visible development during that time, conserving its sterility. In addition, the inactivation factor, F.I. %, was determined after 7 days. In both studied solutions , 99 to 100 % inactivation was obtained. Analyzing the obtained results , the use of irradiation with UVC light as a means of sterilization and the subsequent maintenance of the solutions at refrigeration temperatures, we consider that it constitutes an interesting and new technology to be implemented
Downloads
References
Goff JP. Calcium and magnesium disorders. Veterinary Clinics of. North America Food Animal Practice. 2014; 30: 359–381.
Goff JP, Horst RL. Effects of the addition of potassium or sodium but not calcium, to prepartum rations on milk fever in dairy cows. Journal of Dairy Science. 1997b; 80: 176-186.
Oetzel GR. Management of dry cows for the prevention of milk fever and other mi-neral disorders. Veterinary Clinics of. North America Food Animal Practice.200; 16:369-386.
Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science.2018; 101: 1-51.
Reinhardt TA, Lippolis JD, McCluskey BJ, Goff JP, Horst RL. Prevalence of subclinical hypocalcemia in dairy herds. The Veterinary Journal.2011; 188:122–124.
Martinez N, Risco CA, Lima FS, Bisinotto RS, Greco LF, Ribeiro ES, Maunsell F, Galvão K, Santos JEP. Evaluation of peripartal calcemic status, energetic profile, and neutro-phil function in dairy cows at low or high risk of developing uterine disease. Journal of Dairy Science.2012; 95:7158–7172.
Megahed AA, Hiew MWH, El Badawy SA, Constable PD. Plasma calcium concentra-tions are decreased at least 9 hours before parturition in multiparous Holstein-Frie-sian cattle in a herd fed an acidogenic diet during late gestation. Journal of Dairy Science.2018; 101:1365-1378
Melendez P, Donovan GA, Risco CA, Goff JP. Plasma mineral and energy metabolite concentrations in dairy cows fed an anionic prepartum diet that did or did not have retained fetal membranes after parturition. American Journal of Veterinary Research. 2004; 65: 1071-1076.
McArt JAA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lacta-tion dairy cattle. Journal of Dairy Science.2012; 95:5056-5066.
Kelton DF, Lissemore KD, Martin RE. Recommendations for recording and calcula-ting the incidence of selected clinical diseases of dairy cattle. Journal of Dairy Scien-ce.1998; 81: 2502-2509.
Melendez P, Risco CA. Management of transition cows to optimize reproductive effi-ciency in dairy herds. Veterinary Clinic of North America Food Animal Practice.2005; 21:485-501.
Melendez P, Risco CA.Reproduction, events and management pregnancy: Peripar-turient disorders. Reference module in food sciences. First ed. Elsevier Academic Press.2016.
Goff JP, Horst RL. Physiological changes at parturition and their relationship to meta-bolic disorders. Journal of Dairy Science. 1997a; 80:1260-1268.
Melendez P, Bartolome J. Advances on nutrition and fertility in dairy cattle: Review. Re-vista Mexicana de Ciencias Pecuarias. Revista Mexicana de Ciencias Pecuarias 2017; 8(4):407-417 http://dx.doi.org/10.22319/rmcp.v8i4.4160.
Block E. Manipulation of dietary cation-anion difference on nutritionally related production diseases, productivity, and metabolic responses of dairy cows. Journal of Dairy Science. 1994; 77:1437-1450.
Lean IJ, DeGaris PJ, McNeil DM, Block E. Hypocalcemia in dairy cows: meta-analysis and dietary cation anion difference theory revisited. Journal of Dairy Science.2006; 89: 669–684.
Vagnoni DB, Oetzel GR. Effects of dietary cation-anion difference on the acid-base status of dry cows. Journal of Dairy Science.1998; 81:1643-1652.
Ramos-Nieves JM, Thering BJ, Waldron MR, Jardon PW, Overton TR. Effects of anion supplementation to low-potassium prepartum diets on macromineral status and per-formance of periparturient dairy cows. Journal of Dairy Science.2009; 92:5677–5691.
Melendez P, Poock S. A dairy herd case investigation with very low dietary ca-tion-anion difference in prepartum dairy cows. Frontiers in Nutrition 2017; 4: 26.
Charbonneau E, Pellerin D, Oetzel GR. Impact of lowering dietary cation-anion diffe-rence in nonlactating dairy cows: a meta-analysis. Journal of Dairy Science.2006; 89: 537-548.
Goff JP, Ruiz R, Horst RL. Relative acidifying activity of anionic salts commonly used to prevent milk fever. Journal of Dairy Science. 2004; 87: 1245–1255.
Weich W, Block E, Litherland NB. Extended negative dietary cation-anion differen-ce feeding does not negatively affect postpartum performance of multiparous dairy cows. Journal of Dairy Science. 2013; 96:5780-5792.
Weiss WP, Azem E, Steinberg W, Reinhardt TA. Effect of feeding 25-hydroxyvitamin D3 with a negative cation-anion difference diet on calcium and vitamin D status of periparturient cows and their calves. Journal of Dairy Science2015; 98:5588-5600.
Wu Z, Bernard JK, Zanzalari KP, Chapman JD. Effect of feeding a negative dietary ca-tion-anion difference diet for an extended time prepartum on postpartum serum and urine metabolites and performance. Journal of Dairy Science 2014; 97:7133–7143.
Roche JR, Petch S, Kay JK. Manipulating the dietary cation-anion difference via dren-ching to early-lactation dairy cows grazing pasture. Journal of Dairy Science. 2005;88: 264–276.
Melendez P, Zaror V, Gaul P, Poock SE, Goff JP. Effect of diets containing sulfate or chlo-ride-based anionic salts, fed to grazing prepartum dairy cows, on concentrations of Ca in plasma, disease incidence and milk yield. New Zealand Veterinary Journal.2019. https:// doi.org/10.1080/00480169.2018.1556747.
Oetzel GR. Oral calcium supplementation in peripartum dairy cows. Veterinary Clin-ics of. North America Food Animal Practice. 2013; 29:447-455.
Roberts KI, Bennison J, McDougall S. 2019. Effect of treatment with oral Ca boluses following calving on concentrations of Ca in serum in pasture-based dairy cows. New Zealand Veterinary Journal. 2019; 67:20-26. doi: 10.1080/00480169.2018.1520654.
Valldecabres A, Pires JAAA, Silva-del-Río N. Effect of prophylactic oral calcium supple-mentation on pp mineral status and markers of energy balance of multiparous Jersey cows. Journal of Dairy Science.2018;101: 4460–4472.
Domino AR, Korzec HC, McArt JAA. Field trial of 2 calcium supplements on early lac-tation health and production in multiparous Holstein cows. Journal of Dairy Science. 2017; 100:9681-969.
Meléndez P, Donovan A, Risco CA, Hall MB, Littell R, Goff J. Metabolic responses of transition cows fed anionic salts and supplemented at calving with Calcium and Ener-gy. Journal of Dairy Science. 2002; 85:1085-1092.
Meléndez P, Donovan A, Risco CA, Hall BA, Littell R, Goff J. Effect of calcium-energy supplements on calving-related disorders, fertility and milk yield during the transi-tion period in cows fed anionic diets. Theriogenology. 2003; 60:843-854.
Downloads
Published
How to Cite
Issue
Section
License
Al momento de enviar sus contribuciones, los colaboradores deberán declarar , de manera fehaciente, que poseen el permiso del archivo o repositorio donde se obtuvieron los documentos que se anexan al trabajo, cualquiera sea su formato (manuscritos inéditos, imágenes, archivos audiovisuales, etc.), permiso que los autoriza a publicarlos y reproducirlos, liberando a la revista y sus editores de toda responsabilidad o reclamo de terceros , los autores deben adherir a la licencia Creative Commons denominada “Atribución - No Comercial CC BY-NC-SA”, mediante la cual el autor permite copiar, reproducir, distribuir, comunicar públicamente la obra y generar obras derivadas, siempre y cuando se cite y reconozca al autor original. No se permite, sin embargo, utilizar la obra con fines comerciales.