Water storage capacity of shrub canopy in the central aridsemiarid region of Argentina

  • Mónica Álvarez Redondo Universidad Nacional de La Pampa, Facultad de Agronomía
  • Edgardo Adema INTA - EEA Anguil

Keywords:

biomass, water storage, shrub, semiaridarid

Abstract

Water storage capacity by the vegetation is useful for understanding hydrological processes in aridsemiarid ecosystems. The aim of this study was to determine the capacity of shrub canopy water storage based on structural characteristics and biomass of Chuquiraga erinacea, Larrea divaricate and Condalia microphylla, three dominant shrub species of Caldenal y Monte Occidental, Argentina. The study was conducted in Chacharramendi, La Pampa, located on the semiarid central area of Argentina. Predictive models to estimating the aboveground biomass of the species from measurements of diameter and height of plant in the field were determined. Water storage capacity was measured on whole plants from immersion method. Water storage capacity, expressed in percentage of biomass was determined by difference wet weight (PM) fresh weight (PF). The average canopy diameter as the independent variable provided the best fit for predicting aboveground biomass in the three species studied. Chuquiraga erinacea was the species that showed higher water storage capacity with 38%, followed in decreasing order Larrea divaricata and Condalia microphylla with 26% and 23% respectively. The results show that a significant fraction of rainfall is retained by the dense shrub communities that dominate the site, and returns to the atmosphere by evaporation. The water interception by vegetation is key in the hydrological dynamics of arid environments, where the increase of shrub density is a dynamic and progressive process that affects the productivity of the ecosystems of the region.

Downloads

Download data is not yet available.

References

Acosta­ Mireles M., A. Vargas­ Hernández, A. Velásquez­ Martínez & J.D. Echevers ­Barra. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca. México. Agrociencia 36: 725-­736.

Adema E.O. 2006. Recuperación de pastizales mediante rolado en el Caldenal y en el Monte Occidental. Publ. Técnica N° 65. Ed. INTA Anguil. 52 p.

Adema E.O., D.E. Buschiazzo, F.J. Babinec, T.E. Rucci & V.F. Gómez Hermida. 2004. Mechanical control of shrubs in the semiarid Argentina and its effects on soil water content and grassland productivity. Agric. Water Manage. 68: 185-­194.

Adema E.O., F.J. Babinec, D.E. Buschiazzo, M.J. Martín & N. Peinemann. 2003. Erosión hídrica en los suelos del caldenal. Publ. Técnica N° 53. Ed. INTA Anguil. 34 p.

Aguiar M.R. & O.E. Sala. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol.14: 273-­277.

Belmonte Serrato F. & A. Romero Diaz. 1998. A simple technique for measuring rainfall interception by small shrubs: interception flow collection box. Hidrol. process. 12(3): 471­-482.

Belmonte Serrato F. 2001. Balance hídrico, distribución de flujos y modelización de la intercepción en dos arbustos semiáridos mediante lluvia simulada. Papeles de Geografía 33: 23­-34.

Belmonte Serrato F. & F. López Bermúdez. 2003. Estimación de la biomasa de una especie vegetal mediterránea (Tomillo: Thymus vulgaris) a partir de algunos parámetros de medición sencilla. Ecología 17: 145­-151.

Cabrera A.L. 1976. Regiones Fitogeográficas Argentinas. En: Enciclopedia Argentina de Agricultura y Jardinería. Tomo II (1) 85 p.

Cano E. 1988. Pastizales naturales de La Pampa. Tomos I: Descripción de las especies mas importantes. Convenio AACREA – Gob. De La Pampa. Buenos Aires. 425 p.

Cantú Silva I. & H. González Rodríguez. 2005. Pérdidas por intercepción de la lluvia en tres especies de matorral submontano. CIENCIA UANL VIII (1): 80­-85.

Davie T. 2002. Fundamentals of Hydrology, second ed. Routledge, London. pp. 20­22.

Di Rienzo J.A., F. Casanoves, M.G. Balzarini, L. González, M. Tablada & C.W. Robledo. 2016. InfoStat, versión 2016, Grupo InfoStat, FCA, Universidad Nacional de Córdoba,Argentina

Dunkerley D.L. 2008. Intra­storm evaporation as a component of canopy interception loss in dryland shrubs: observations from Fowlers Gap, Australia. Hydrol. Proc. 22: 1985-­1995.

Fleischbein K., W. Wilcke, R. Goller, P. Böhm, C. Valarezo, W. Zech & A.W. Küchler. 2005. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrol. Proc. 19, 1355–1371.

Garcia­Estringana P., N. Alonso­Blázquez & J. Alegre. 2010. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 389: 363­-372.

Gash J.H.C. 1979. An analytical model of rainfall interception by forest. Q. J. R. Meteorol. Soc. 105(443): 43­-55.

Gash J.H.C., C.R. Lloyd & G. Lachaud. 1995. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 170: 79-­86.

Glover J. & M.D. Gwynne. 1962. Light rainfall and plant survival in East Africa I. Maize. J. Ecol. 50: 111­-118.

Herwitz S.R. 1985. Interception storage capacities of tropical rainforest canopy trees. J. Hydrol. 77: 237-­252.

Hierro J.L., L. Branch, D. Villarreal & K. Clark. 2000. Predictive equations for biomass and fuel characteristics of Argentine shubs. J. Range Manage. 53: 617-­621.

Iglesias M.R. & A.H. Barchuk. 2010. Estimación de la biomasa aérea de seis leguminosas leñosas del Chaco Árido Argentina). Comunicación breve. Ecol. Austral 20: 71­-79.

INTA, Prov. de La Pampa, UNLPam. 1980. Inventario Integrado de los Recursos Naturales de la Prov. de La Pampa. 493 p.

Jacyszyn B. & A. Pittaluga. 1977. Suelos del área de Chacharramendi, provincia de La Pampa. CIRN, Castelar. 42 p.

Kovda V.A., E.M. Samoilova, J.L. Charley & J.J. Skujins. 1979. Soil Processes in Arid Lands. In Arid Lands Ecosystems: Their Structure, Functioning and Management. Edited by D.

Goodall and R. Perry. IBP 17. Cambridge University Press.40

Alvarez Redondo M. & E. Adema Llorens P. & F. Gallart. 2000. A simple method for water storage capacity measurement. J. Hydrol. 240: 131­-144.

Pressland A.J. 1973. Rainfall partitioning by an arid woodland (Acacia aneura F. Muell.) in south­western Queensland. Australian J. Bot. 21: 235­-245.

Rutter A.J., K.A. Kershaw, P.C. Robins & A.J. Morton. 1971. A predictive model of rainfall interception in forest, I. Derivation of the model from observations in a plantation of corsican pine. Agric. Meteorol. 9: 367­-384.

Segura M. & M. Kanninen. 2005. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1): 2­8.

Slatyer R.O. 1965. Measurement of precipitation, interception by an arid plant community (Acacia aneura F.). Arid Zone Res. 25: 181­-192.

Spetch R.L. 1957. IV Soil moisture patterns produced by rainfall interception and stemflow. Australian J. Bot. 5:137­-150.

Thornes J. 1994. Catchment and channel hydrology. En: Geomorphology of desert environments (A.D. Abrahams & A.J. Parsons Eds.). Chapman and Hall. London. pp. 257­-287.

Vázquez P., E. Adema & B. Fernández. 2013. Dinámica de la fenología de la vegetación a partir de series temporales de NDVI de largo plazo en la provincia de La Pampa. Ecol. Austral. 23: 77-­86.

Vázquez P., E. Adema, E. Llorens, L. Butti, S. Poey, I. Stefanazzi & F. Babinec. 2016. Modelado y predicción de la productividad neta de forraje en el árido­ semiárido de la provincia de La Pampa. Publicación técnica N° 102. INTA.

Wang D. & G. Wang. 2007. Toward a robust canopy hydrology scheme with precipitation subgrid variablility. J. Hydrometeorol. 8: 439­-446.

Published

2018-11-11

Issue

Section

Artículos Científicos y Técnicos