Comparative analysis of two techniques to evaluate the water storage capacity in Chuquiraga erinacea Don

  • Mónica Álvarez Redondo Universidad Nacional de La Pampa, Facultad de Agronomía
  • Fernando Avecilla CONICET – INCITAP (Instituto de Ciencias de la Tierra y Ambientales de La Pampa)
  • Edgardo Adema INTA - EEA Anguil
  • Lucas Butti INTA - EEA Anguil

Keywords:

rainfall interception, immersion, rainfall simulation, biomass, semiaridarid

Abstract

Rainfall interception is a process scarcely studied in arid and semiarid environments. The aim of this study was comparatively analyze two field techniques to evaluate the water storage capacity in Chuquiraga erinacea Don., characteristic shrub species of the CaldenalMonte Occidental ecotone region, Argentina The study was conducted in the annexed field of INTA in Chacharramendi, La Pampa. Water storage capacity was measured on whole plants from two techniques on field: rainfall simulation and immersion. Water storage capacity, expressed in percentage of biomass was determined by difference wet weight fresh weight. Equality of results from field techniques for whole plants of Chuquiraga erinacea justified the application of immersion method in the study to be more expeditious implementation and more economical in terms of time and costs.

Downloads

Download data is not yet available.

References

Adema E.O., D.E. Buschiazzo, F.J. Babinec, T.E. Rucci & V.F. Gómez Hermida. 2004. Mechanical control of shrubs in the semiarid Argentina and its effects on soil water content and grassland productivity. Agric. Water Manage. 68: 185­-194.

Adema E.O., F.J. Babinec, D.E. Buschiazzo, M.J. Martín & N. Peinemann. 2003. Erosión hídrica en suelos del Caldenal. Publ. Técnica N° 53. Ed. INTA Anguil. 34 p.

Aston A.R. 1979. Rainfall interception by eight small trees. J. Hydrol. 42: 383­-396.

Belmonte Serrato F. 2001. Balance hídrico, distribución de flujos y modelización de la intercepción en dos arbustos semiáridos mediante lluvia simulada. Papeles de Geografía 33: 23-­34.

Belmonte Serrato F. & F. López Bermúdez. 2003. Estimación de la biomasa de una especie vegetal mediterránea (Tomillo: Thymus vulgaris) a partir de algunos parámetros de medición sencilla. Ecología 17: 145­-151.

Cano E. 1988. Pastizales naturales de La Pampa. Tomos I: Descripción de las especies mas importantes. Convenio AACREA –Gob. De La Pampa. Buenos Aires. 425 p.

Cantú Silva I. & H. González Rodríguez. 2005. Pérdidas por intercepción de la lluvia en tres especies de matorral submontano. CIENCIA UANL VIII 1: 80­-85.

Domingo F., G. Sánchez, M.J. Moro, J.A. Brenner & J. Puigdefábregas. 1998. Measurement and modelling of rainfall interception by three semi­arid canopies. Agric. Meteorol. 91: 275­-292.

Garcia­Estringana P., N. Alonso­Blázquez & J. Alegre. 2010. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 389: 363-­372.

García Ortiz E.M. 2006. Efecto de la estructura de la copa en la partición de lluvia de tres especies arbustivas en clima semiárido. Tesis Doctoral. Universidad de Almería. España. 438 p.

Itzhac K., L. Hanoch & S. Pariente. 2008. Rainfall distribution around shrubs: Eco­geomorphic implications for arid hillslopes. Geomorphology 95: 544­-548.

Keim R.F., A.E. Skaugset & M. Weiler. 2006. Storage of water on vegetation under simulated rainfall of varying intensity. Adv. Water Resour. 26: 974-­986.

Mauchamp A. & J.L. Janeau. 1993. Water funnelling by the crown of Flourensia cernua, a Chihuahuan Desert shrub. J. Arid Environ. 25: 299-­306.

Monson R.K., M.C. Grant, C.H. Jaeger & A.W. Schettle. 1992. Morphological causes for the retention of precipitation in the crown of alpine plants. Environ. Exp. Bot. 32: 319-­327.

Nave Marcela R., A. Pedrani, A. Vich & A. Mariani. 1994. Ajuste del modelo de Horton mediante datos de infiltración obtenidos en el piedemonte mendocino. Manejo Ecológico de Cuencas. INIGEA, CC 330, Mendoza. MULTEQUINA 3: 133-­140.

Thurow T.L., W.H. Blackburn, S.D. Warren & C.A. Taylor Jr. 1987. Rainfall interception by midgrass, shortgrass, and live oak mottes. J. Range Manage. 40: 455-­460.

Tromble J.M. 1988. Water interception by two arid shrubs. J.Arid Environ. 15: 65­-70.

West NE & Gifford GF. 1976. Rainfall interception by cool­desert shrubs. J. Range Manage. 29: 171-­172.

Wohlfahrt G., K. Bianchi & A. Cernusca. 2006. Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow. J. Hydrol. 319: 383-­390.

Wood M.K., T.L. Jones & M.T. Vexa­Cruz. 1998. Rainfall interception by selected plants in the Chihuahuan Desert. J. Range Manage. 51: 91­-98.

Xing­ping Wang, Ya­feng Zhang, Rui Hu, Yangxia Pan & Ronny Berndtsson. 2012. Canopy storage capacity of xerophytic shrubs in Northwestern China. J. Hydrol. 454-­455: 152­-159.

Wang D. & G. Wang. 2007. Toward a robust canopy hydrology scheme with precipitation subgrid variablility. J.Hydrometeorol. 8: 439­-446.

Published

2018-11-11

How to Cite

Álvarez Redondo, M., Avecilla, F., Adema, E., & Butti, L. (2018). Comparative analysis of two techniques to evaluate the water storage capacity in Chuquiraga erinacea Don. Semiárida, 28(1). Retrieved from https://cerac.unlpam.edu.ar/ojs/index.php/semiarida/article/view/3496

Issue

Section

Artículos Científicos y Técnicos