Tolerance of seedlings from different lettuce genotypes to irrigation with water of high salt content

  • Oscar Alberto Siliquini Universidad Nacional de La Pampa, Facultad de Agronomía
  • María Clementina Pereyra Cardozo Universidad Nacional de La Pampa, Facultad de Agronomía
  • Juan Carlos Lobartini Universidad Nacional del Sur, Departamento de Agronomía
  • Gustavo Adolfo Orioli Universidad Nacional del Sur, Departamento de Agronomía
  • Adriana Quiriban Universidad Nacional de La Pampa, Facultad de Agronomía
  • Juan Pablo Ponce Universidad Nacional de La Pampa, Facultad de Agronomía
  • Diego Rene Riestra Universidad Nacional de La Pampa, Facultad de Agronomía

Keywords:

antioxidants, genotypes, salinity, seedlings

Abstract

Horticultural production is carried out under irrigation in the area of Santa Rosa, La Pampa province, where available water sources are highly concentrated in salts. The aim of this study was to evaluate the effect of irrigation with high salt content water on growth, superoxide dismutase (SOD) activity and malondialdehyde concentration, in seedlings of 11 lettuce genotypes. The experiment was performed in a greenhouse, where the seedlings were irrigated for 54 days with two different kinds of water, one from rain as a control and another one of high salinity. Irrigation with high salinity water caused a decrease of 11, 12 and 87% in dry weight yield for Bermella, Grand Rapid and Boltar genotypes, respectively, and a vigor reduction of 2% for Ice 15975 and 3% for Grand Rapid. A the same time, irrigation treatment with high salinity resulted in plant malondialdehyde concentration  increases of 56, 98 and 138% for Bermella, Ice 15975 and Grand Rapid, respectively. In the case of the last two genotypes, their response was associated with a SOD activity decrease. The rest of the genotypes did not show changes in malondialdehyde concentration. These results evidenced a differential response among the assayed lettuce varieties, and that malondialdehyde concentration can be used to select genotypes tolerant to irrigation with water of high salt content at seedling stage.

 

DOI: http://dx.doi.org/10.19137/semiarida.2017(02).5966

Downloads

Download data is not yet available.

References

Ashraf M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. adv. 27: 84­-93.

Beauchamp W.R., J.M. Pickens, J.L. Sibley, J.A. Chappell, N.R. Martin & A. F. Newby. 2017. Salt level in a simulated aquaponics system and effects on bibb lettuce. Intl J. Veg. Sci. 23: 1­15.

Beyer W.F. & I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161: 559­-566.

Borzouei A., M. Kafi, E. Akbari­ Ghogdi & M.A. Mousavi­Shalmani. 2012. Long term salinity stress in relation to lipid peroxidation, superoxide dismutase activity and proline content of salt sensitive and salt tolerant wheat Cultivars. Chilean J. A. R. 72: 476­-482.

Bowler C., M.V. Montagu & D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. 43: 83-­116.

Burritt D.J. & S. MacKenzie. 2003. Antioxidant metabolism during acclimation of Begonia x erythrophylla to high light levels. Ann. Bot. 91: 783­-794.

Di Rienzo J.A., F. Casanoves , M.G. Balzarini, L. Gonzalez , M. Tablada & C.W.Robledo InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Dixon R.A. & N.L. Paiva. 1995. Stress­induced phenylpropanoid metabolism. Plant Cell. 7: 1085-­1097.

Eraslan F., A. Inal, O. Savasturk & A. Gunes. 2007. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci. Hortic. 114: 5­10.

Hodges D.M., J.M. De Long, C.F. Forney & R.K. Prange. 1999. Improving the thiobarbituric acid­re active ­substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604­-611.

Joseph B. & D. Jini. 2010. Insight into the role of antioxidant enzymes for salt tolerance in plants. Int. J. Bot. 6: 456-­464.

Kang H.M. & M E. Saltveit. 2002. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 50: 7536-­7541.

Kohler J., J.A., Hernández & AR. Fuensanta Caravaca. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65: 245-­252.

Koyama R, H. Itoh S. Kimura, A. Morioka & Y. Uno. 2012. Augmentation of antioxidant constituents by drought stress to roots in leafy vegetables. Hort Tech. 22: 121-­125.

Kimura M. & D.B. Rodríguez­Amaya 2003. Carotenoid composition of hydroponic leafy vegetables. J. Agric. Food Chem. 51: 2603­2607.7

Lamz Piedra A., M.C. González Cepero & Y. Reyes Guerrero. 2013. Indicadores bioquímicos para la selección temprana de genotipos de arroz (Oryza sativa L.) con tolerancia a la salinidad. Cultivos Tropicales 34: 11­-17.

Lamz Piedra, A. & M.C. González Cepero. 2013. La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales 34: 31-­42.

Lanza Castelli S., K. Grunberg, N. Muñoz, S. Griffa, S. López Colomba, E. Ribotta, A. Biderbost and C. M. Luna. 2010. Oxidative damage and antioxidant defenses as potential indicators of salt­tolerant Cenchrus ciliares L. genotypes. Flora 205, 622-­626.

Maroto Borrego J., A. Miguel Gómez & C Baixauli Soria. 2000. La lechuga y la escarola. Funda ción Caja Rural Valencia. Ediciones Mundiprensa. España. pp 208-­214.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-­410.

Oh M.M., E.E. Carey & C.B. Rajashekar. 2009. Environmental stresses induce health promoting phytochemicals in lettuce. Plant Physiol. Bioch. 47: 578­-583.

Ouhibi C., H. Attia, F. Rebah, N. Msilini, M. Chebbi, J. Aarrouf, L. Urban & M. Lachaal. 2014. Salt stress mitigation by seed priming with UV­C in lettuce plants; growth, antioxidant activity and phenolic compounds. Plant Physiol. Biochem. 83: 126­-133.

Rajashekar C.B., E.E. Carey, X. Zhao & M.M Oh. 2009. Health­promoting phytochemicals in fruits and vegetables: impact of abiotic stresses and crop production practices. Funct. Plant Sci. Biotech. 3. 30-­38.

Tommasino E., S. Griffa, K. Grunberg, A. Ribotta, E. López Colomba, E. Carloni, M. Quiroga & C.M. Luna. 2012. Malondialdehyde content as a potential biochemical indicator of tolerant Cenchrus ciliaris L. genotypes under heat stress treatment. Grass Forage Sci. 67: 456-­459.

Published

2018-06-22

Issue

Section

Artículos Científicos y Técnicos