Proline accumulation as a biochemical indicator of drought tolerance in wheat genotypes deprived of irrigation at the start of stem elongation

  • Adriana Elizabet Quiriban Universidad Nacional de La Pampa, Facultad de Agronomía
  • Maria Clementina Pereyra Cardozo Universidad Nacional de La Pampa, Facultad de Agronomía

Keywords:

hydric stress tolerance, photosynthetic pigments

Abstract

Studying the biochemical and physiological responses of plants with different capacities to deal with water stress is a valid approach to identify indicators of drought tolerance. Relative water content (RWC), osmotic potential (Ѱo), greenness index, proline accumulation and contents of chlorophyll and carotenoids were analyzed in four wheat (Triticum aestivum L.) cultivars, under conditions of water supply suppression during a period of 15 days from the start of stem elongation, to determine differences in their response to drought. Irrigation withdrawal caused a significant reduction in RWC and Ѱo. Differences in proline accumulation were observed among assayed genotypes. Hydric stress induced a large proline accumulation in ACA 315 and Baguette Premium 11 stable cultivars. Watering deprivation did not cause significant effects on the content of pigments. The higher proline accumulation of ACA 315 and Baguette Premium 11 may be a relevant fact to explain the stability of such cultivars. It is concluded that concentration of accumulated proline could be used as a biochemical indicator of drought tolerance in wheat at the start of stem elongation.

 

DOI: http://dx.doi.org/10.19137/semiarida.2017(02).5157

 

Downloads

Download data is not yet available.

References

Anjum F., M. Yaseen, E. Rasool, A. Wahid & S. Anjum. 2003. Water stress in barley (Hordeum vulgare L.).) II. Effect on chemical composition and chlorophyll contents. Pak. J. Agri. Sci. 40: 45-­49.

Anjum S.A., X. Xie, L. Wang, M. F. Saleem, C. Man & W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6: 2026­-2032.

Bates L., R. Waldren & D. Teare. 1973. Rapid determination of free proline for water­stress studies. Plant & Soil 39: 205­-207.

Bono A., A. Quiroga & I. Frasier. 2010. El cultivo de trigo en la región semiárida y subhúmeda pampeana. INTA. EEA Anguil. Publicación Técnica Nº 79.

Cardona­ Ayala C., A. Jarma­ Orozco, H. Araméndiz­ Tatis, M Peña­ Agresott & C. Vergara Córdoba. 2014. Respuestas fisiológicas y bioquímicas del fríjol caupí (Vigna unguiculata L. Walp.) bajo déficit hídrico. Rev. Colomb. Cienc. hortíc. 8: 250-­261.

Cattivelli L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Mare, A. Tondelli & A.M. Stanca. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 105: 1­14.

Demmig­Adams B. & W.W. Adams. 1996. The role of xanthophyll cycle carotenoids in the protection of

photosynthesis. Trends Plant Sci. 1: 21­-26.

Díaz P., O. Borsani, A. Márquez & J. Monza. 2005a. Osmotically induced proline accumulation in Lotus corniculatus leaves is affected by light and nitrogen source. Plant Growth Reg. 46: 223­-232.

Díaz P., A. Borsani, Márquez & J. Monza. 2005b. Nitrogen metabolism in relation to drought stress responses in cultivated and model Lotus species. Lotus Newsletter 35: 83-­92.

Díaz P., M. Betti, D.H. Sánchez, M.K. Udvardi, J. Monza & A.J. Márquez. 2010. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol. 188: 1001­-1013.

Di Rienzo J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W Robledo. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Hare P.D. & W.A. Cress. 1997. Metabolic implications of stress­induced proline accumulation in plants. Plant Growth Regul. 21: 79-­102.

Hurtado R., A. Faroni, G. Murphy, L. Serio & M.E. Fernández Long. 2009. Deficiencia de agua en el suelo crítica para el rendimiento del trigo en la región pampeana argentina. Rev. Fac. Agron. UBA 1: 1­12.

Jaleel C.A., P. Manivannan, A. Wahid, M. Farooq, H. J. Al­Juburi, R. Somasundaram & R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11: 100­-105.

Lichtenthaler H.K. & C. Buschmann. 2001. Chlorophylls and carotenoids: measurement and characterization by UV­VIS spectroscopy. Current protocols in food analytical chemistry. F4.3.1­F4.3.8.

Loggini B., A. Scartazza, E. Brugnoli & F. Navari Izzo. 1999. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119: 1091­-1099.

Mattioni C., N.G.Lacerenza, A. Troccoli, A. M. De Leonardis & N. Di Fonzo. 1997. Water and salt stress­induced alterations in proline metabolism of Triticum durum L. seedlings. Physiol. Plant. 101: 787­-792.

Ortiz M. H. Silva, P. Silva & E. Acevedo. 2003. Estudio de los parámetros hídricos foliares en trigo (Triticum aestivum L.) y su uso en selección de genotipos resistentes a sequía. Rev. Chil. Hist. Nat. 76: 219­-233.

Pereyra Cardozo M. & A.E. Quiriban. 2014. Las proteínas en la tolerancia al estrés hídrico en plantas. Semiárida Rev. Fac. Agron. UNLPam. 24: 55-­67. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/3024/2935

Quiriban A.E., M. Castaño & M. Pereyra Cardozo. 2015. Relación entre la baja disponibilidad de agua en inicio de encañazón en trigo (Triticum aestivum L.) y la concentración de proteína en grano. Semiárida Rev. Fac. Agron. UNLPam. 25: 19­-25. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/2518/2406

Reddy A.R., K.V. Chaitanya & M. Vivekanandan. 2004. Drought­induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189­-1202.

Rejeb K.B., C. Abdelly & A. Savouré. 2014. How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 80: 278­-284.

Sainz M., P. Díaz, J. Monza & O. Borsani. 2010. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to photosystem II in combined drought­heat stressed Lotus japonicus. Physiol. Plant 140: 46­-56.

Sairam R.K. & D.C. Saxena. 2000. Oxidative Stress and Antioxidants in Wheat Genotypes: Possible Mechanism of Water Stress Tolerance. J. Agron. & Crop Sci. 184: 55-­61.

Sperdouli I. & M. Moustakas. 2012. Interaction of proline, sugars and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J. Plant Physiol. 169: 577-­585.

Szabados L. & A. Savouré. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15: 89-­97.

van Rensburg L., G.H.J. Krüger & H. Krüger. 1993. Proline accumulation as drought­tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol. 141: 188-­194.

Verbruggen N. & C. Hermans. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753-­759.

Published

2018-06-22

How to Cite

Quiriban, A. E., & Pereyra Cardozo, M. C. (2018). Proline accumulation as a biochemical indicator of drought tolerance in wheat genotypes deprived of irrigation at the start of stem elongation. Semiárida, 27(2). Retrieved from https://cerac.unlpam.edu.ar/ojs/index.php/semiarida/article/view/2971

Issue

Section

Artículos Científicos y Técnicos