Influence of use of soil on physical indicators compaction

  • Alberto Raúl Quiroga INTA - EEA Anguil Universidad Nacional de La Pampa - Facultad de Agronomía
  • Agustín Juan Oderiz INTA - EEA Anguil
  • Mauricio Uhaldegaray INTA - EEA Anguil
  • Cristian Alvarez INTA - EEA Anguil
  • Eric Daniel Scherger INTA - EEA Anguil
  • Romina Fernández INTA - EEA Anguil
  • Ileana Frasier INTA Castelar - CIRN - Instituto de suelos

DOI:

https://doi.org/10.19137/semiarida.2016(02).19-26

Keywords:

bulk density, organic matter, susceptibility to compaction

Abstract

Changes in land use produce significant modifications of ecosystem structure and functioning. Associated with decreasing contents of organic matter (MO) they would produce changes in soil macroporosity that might condition a lower water use efficiency, emphasizing processes of soil physical degradation. The objective was to evaluate the effects of different uses on soil properties related to compaction. The study was conducted at experimental sites of the National Water Program of INTA, over 52 soils under two contrasting managements: virgin or pasture (V: 26 soils) and agriculture (A: 26 soils). They were grouped by soil moisture regime: ustic (Us: 36 soils) and udic (Ud: 16 soils). Maximum apparent density (DAm) decreased with increasing clay + silt contents (A + L) (A: R2= 0.60, p= 0.0001 V: R2= 0.44, p= 0.0016). Also significant was the influence of MO on bulk density (DA) and the susceptibility to compaction (SC) in soils of both moisture regimes. These changes could possibly explain much of the loss of infiltration, increased flooding, crusting and / or runoff from soils that under determined use have lost MO.

 

DOI: http://dx.doi.org/10.19137/semiarida.2016(02).19-26

Downloads

Download data is not yet available.

References

AragónA., M. García, R. Filgueira &A. Pachepsky. 2000. Maximum compactibility of Argentine soils from the Proctor Test: The relationship with organic carbon and water content. Soil Till. Res. 56: 197-204.

Atwell B. 1990. The effect of soil compaction on wheat during early tillering. I. Growth, development and root structure. Nex Phytol. 115: 29-35.

Ball B., W. Cheshire, E. Robertson & E. Hunter. 1996. Carbohydrate composition in relation to structural stability, compactability and plasticity of two soils in a long-term experiment. Soil Till. Res. 39: 143-160.

Baver L. & W. Gardner. 1972. Soil Physics. (Ed. J. Wiley and Sons). NY, 529 p.

Blanco-Canqui H., L. Stone, A. Schlegel, D. Lyon, M. Vigil, M. Mikha, P. Stahlman & C. Rice. 2008. No till induced increase in organic carbon reduces maximum bulk density of soils. Soil Sci. Soc. Am. J. 73(6): 1871-1879.

Casanovas E., H. Echeverría & G. Studdert. 1995. Materia orgánica del suelo bajo rotaciones de cultivos. Contenido total y distintas fracciones. Ciencia del Suelo 13: 16-20.

Davidson J., F. Gray & D. Pinson. 1967. Changes in organic matter and bulk density with depth under two cropping systems. Agron. J. 59: 375-378.

Denef K. & J. Six. 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 56: 469-479.

Di Rienzo J., F. Casanoves, M. Balzarini, L. Gonzales, M. Tablada & C. Robledo. 2009. Grupo InfoStat. FCA, Universidad Nac. Córdoba,Argentina.

Eaton J. & D. Lawrence. 2009. Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatán. For. Ecol. Manage. 258: 949–958.

Faure A. 1978. Comportement des sols au compactage: Role de l’argille et consecuences sur l’arrangement des grains. Univ. Sci. Grenoble. 179 p.

Głąb T. 2014. Effect of soil compaction and N fertilization on soil pore characteristics and physical quality of sandy loam soil under red clover/grass sward. Soil Till. Res. 144: 8–19.

Głab T. & B. Kulig 2008. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till. Res. 99: 169–178.

Herencia J., P. Garcia-Galavis & C. Maqueda. 2011. Long-term effect of organic and mineral fertilization on soil physical properties under greenhouse and outdoor management practices. Pedosphere 21: 443–453.

Hillel D. 2011. An overview of soil and water management: the challenge of enhancing productivity and sustainability. pp. 3-11. En: Soil Management: Building a Stable Base forAgriculture (J.L. Hatfield & T.J. Sauer Eds.).Am. Soc. Agron., Soil Sci. Soc. Am., Madison, Wisconsin, USA.

Kruger H. 1996. Compactación en Haplustoles del sudoeste Bonaerense bajo cuatro sistemas de labranza. Ciencia del Suelo 14: 104-106.

Kruger H., S. Venanzi & E. Sa Pereira E. 2005. Efecto del pisoteo por animales en planteos de siembra directa. En: Indicadores de Calidad de Suelos, Bol. Téc. EEA INTA Villegas, 4: 27-30.

Lampurlanes J. & Cantero Martínez. 1996. Evolución de la densidad aparente de un suelo cultivado bajo distintos sistemas de laboreo en condiciones semiáridas del Valle del Ebro. CNAC, España167-173 pp.

Mettauer H., Y. Tual, Ch. Huck & R. Trendel. 1983. De la connaissance du comportement physique et mecanique des sols de I’Est de la France. Agronomie 3, 141-152.

Naderi-Boldaji M. & T. Keller. 2016. Degree of soil compactness is highly correlated with the soil physical quality index S. Soil Till. Res 159: 41-46.

Pala M., J. Ryan, H. Zhang, M. Singh & H. Harris. 2007. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agr. Water Manage. 93: 133-144.

Perez Moreira R. & F. Díaz Fierros. 1989. Resistencia del suelo y susceptibilidad a la compactación en terrenos de monte sometidos a pastoreo. An. Edafol. Agrobiol. pp. 547-560.

QuirogaA., D. Buschiazzo & E.Adema. 1991. Características edáficas y de manejo en relación con la compactación de los suelos de la región semiárida pampeana central. X CAPERAS, Bahía Blanca.

QuirogaA., D. Buschiazzo & N. Peinemann. 1999. Soil compaction is related to management practices in the semiarid Argentine pampas. Soil Till Res. 52: 21-28.

QuirogaA., D. Buschiazzo & N. Peinemann. 1998. Management of discriminant properties in semiarid soils. Soil Sci. 163(7): 591-597.

Quiroga A., B. Lejarraga, R. Fernández & D. Funaro. 2005.Aspectos del manejo del agua en sistemas mixtos de las

regiones semiárida y subhúmeda pampeana. En Indicadores de Calidad de Suelos, Bol. Téc. EEA INTA Villegas, 4: 19-26.

Salvador V. 2010. Evaluación de la dinámica hidrológica en respuesta a cambios en el uso de la tierra. Tesis de Maestría, UNMdP.

Six J. & K. Paustian. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 68, A4–A9.

Soane B. 1990. The role of organic matter in soil compactibility: A review of some practical aspects. Soil Till Res. 16: 179-201.

Thomas G., G. Hazler & R. Blevins. 1996. The effects of organic matter and tillage on maximum compactability of soils using the proctor test. Soil Sci. 161(8): 502-508.

Venanzi S. & H. Kruger. 2004. Crecimiento del cultivo de avena en función de la densidad aparente del suelo. IV Congreso Nacional Trigo, Bahía Blanca.

Venanzi S., A. Vallati & Kruger H. 2002. Crecimiento temprano del trigo en función de la densidad aparente del suelo. XVIII Congreso AACS, Chubut.

Veum K., K. Goyne, R. Kremer, R. Miles & K. Sudduth. 2013. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 117: 81–99.

Wang Q., Y. Wang, Q. Wang & J. Liu. 2014. Impacts of 9 years of a new conservational agricultural management on soil organic carbon fractions. Soil Till.Res. 143: 1–6.

Walkley A & I.A. Black. 1934. An examination of the Dejtjareff method for determining soil matter and a proposed modification of the cromic acid triation method. Soil Sci. 37: 29-38.

Published

2017-11-30

Issue

Section

Artículos Científicos y Técnicos