Effect of phenological stage, wilting and microbial inoculants application on nutritional quality of alfalfa silage

  • Gabriel Alberto Genero Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa https://orcid.org/0000-0001-5084-2407
  • Guillermo Héctor Pechín Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias https://orcid.org/0000-0001-7341-5897
  • Luis Oscar Sánchez Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Luciano Ginart Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Silvina Soraya Denda Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Cecilia Sánchez Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Tomás Godoy Investigador Independiente
  • Antonio Gerena Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

DOI:

https://doi.org/10.19137/cienvet202224201

Keywords:

alfalfa silage, Lactobacillus plantarum, phenological stage, wilting

Abstract

The objective of this work was to assess the effects of phenological state, wilting and a microbial inoculant on chemical composition, organic acids concentration and ruminal degradability of dry matter (DMRD) of alfalfa silage. The pasture was cut in two phenological stages: 10 % (F10) and 50 % (F50) flowering. The material was chopped and divided into two fractions: with wilting (W) and no wilting (NW). Each fraction was sprayed with an inoculant (Lactobacillus plantarum, 5 × 109 viable cells/g, I) or with distilled water (no inoculant, NI) and ensiled in PVC microsilos, with 6 replications per treatment. After 90 days, pH, dry matter (DM), crude protein (CP), ammonia nitrogen (NH3-N), neutral detergent fiber (NDF) and acid detergent fiber (ADF), DMRD ​​at 30 h, acetic (C2), propionic (C3), butyric (C4) and lactic (LA) acids were determined. The wilting process decreased pH, NH3-N, NDF and ADF, and increased CP of the silage. In F10, wilting decreased the concentration of C2, C3 and C4, and increased LA. In F50, wilting decreased the C2 concentration at the two levels of inoculant and, only when inoculant was not applied, did wilting decrease C3 and C4, and increased LA. In F50-NW the application of inoculant decreased the content of C2, C3 and C4, and increased LA. The DMRD ​​of W was higher than NW, and it was higher in F10 vs F50 only when wilting was applied. The inoculant application decreased the NDF content and, in F50, it decreased NH3-N level. It can be concluded that the use of wilting improves the nutritional quality of alfalfa silage, while the effect of L. plantarum is limited to some combinations of treatments.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Alberto Genero, Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa

Profesor Adjunto de las cátedras de Nutrición Animal y de Fisiología Animal, FCV, UNLPam. Trabajos de investigación en las áreas de nutrición de rumiantes y estrés térmico en bovinos. Asesor privado y productor agropecuario en empresa familiar

Guillermo Héctor Pechín, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Profesor Adjunto de las cátedras de Nutrición Animal y de Producción Porcina, FCV, UNLPam. Trabajos de investigación en las áreas de Nutrición Mineral de Rumiantes y de Producción Porcina

Luis Oscar Sánchez, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Jefe de Trabajos Prácticos de la Cátedra de Nutrición Animal, FCV, UNLPam. Participante en trabajos de investigación de la Cátedra. Asesoramiento en Producción Bovina

Luciano Ginart, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Ayudante de primera en la cátedra de Química Biológica, FCV, UNLPam. Asesor privado y productor agropecuario

Silvina Soraya Denda, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Ayudante de primera en la cátedra de Nutrición Animal, FCV, UNLPam. Jefa del laboratorio de análisis de alimentos para consumo animal, FCV, UNLPam

Cecilia Sánchez, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Licenciada en Biología Molecular. Magister en Producción Agropecuaria en Regiones Semiáridas. Docente en la Catedra de Química Biológica, FCV, UNLPam

Tomás Godoy, Investigador Independiente

Médico Veterinario. Actividad privada, trabajos de nutrición, reproducción y clínica bovina

Antonio Gerena, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Ayudante de primera en la cátedra de Nutrición Animal, FCV, UNLPam. Trabajos en el laboratorio de análisis de alimentos, FCV, UNLPam. Actividad privada en empresas ganaderas

References

1. Basigalup DH. Situación de la alfalfa en Argentina. 5º Jornada Nacional de Forrajes Conservados, 9 y 10 de abril de 2014, INTA Manfredi, Córdoba, Argentina.
2. Bragachini M, Cattani P, Gallardo M, Peiretti J. Forrajes conservados de alta calidad y aspectos relacionados al manejo nutricional. Manual Técnico N° 6, INTA-PRECOP II. 2008. INTA E.E.A. Manfredi, Córdoba, Argentina.
3. Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev. 1996; 19(1):53-68. doi:10.1111/j.1574-6976.1996.tb00253.x.
4. Pahlow G, Muck RE, Driehuis F, Oude Elferink SJWH, Spoelstra SF. Microbiology of ensiling. In: Buxton DR, Muck RE, Harrison JH (eds). Silage science and technology. American Society of Agronomy, Inc., Madison, USA. 2003.
5. Muck RE, Nadeau MG, McAllister TA, Contreras-Govea FE, Santos MC, Kung LJr. Silage review: Recent advances and future uses of silage additives. J Dairy Sci. 2018; 101(5):3980-4000. doi:10.3168/jds.2017-13839.
6. Oliveira AS, Weinberg ZG, Ogunade IM, Cervantes AAP, Arriola KG, Jiang Y, Kim D, Li X, Gonçalves MCM, Vyas, D. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J Dairy Sci. 2017; 100(6):4587-4603. doi:10.3168/jds.2016-11815.
7. Jaurena G, Danelón JL. Tabla de composición de alimentos para rumiantes de la región pampeana argentina. Buenos Aires: Editorial Hemisferio Sur S.A.; 2006.
8. Oude Elferink, SJWH, Driehuis F, Gottschal JC, Spoelstra SF. Silage fermentation processes and their manipulation. En: FAO Electronic Conference on Tropical Silage, 1 September-15 December, 1999. p. 1-28.
9. Hashemzadeh-Cigari F, Khorvash M, Ghorbani GR, Taghizadeh A. The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of lucerne silage. S Afr J Anim Sci. 2011; 41(4):377-88. doi:10.4314/sajas.v41i4.8.
10. Whiter AG, Kung LJr. The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on the fermentation of alfalfa silage. J Dairy Sci. 2001; 84(10):2195-202. doi:10.3168/jds.S0022-0302(01)74666-8.
11. Petruzzi HJ, Stritzler NP, Ferri CM, Pagella JH, Rabotnikof CM. Determinación de materia seca por métodos indirectos: utilización del horno a microondas. En: Boletín de Divulgación Técnica Nº 88. 2005. INTA - Facultad de Agronomía, UNLPam, Anguil, Argentina. p. 8-11.
12. Friggens NC, Oldham JD, Dewhurst RJ, Horgan G. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J Dairy Sci. 1998; 81(5):1331-44. doi: 10.3168/jds.S0022-0302(98)75696-6.
13. Weatherburn, MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967; 39(8):971-74. doi: 10.1021/ac60252a045.
14. Association of Official Analytical Chemists. Official methods of analysis. 17th Ed. AOAC. Arlington, USA. 2000.
15. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74(10):3583-97. doi:10.3168/jds.S0022-0302(91)78551-2.
16. Vanzant E, Cochran R, Titgemeyer E. Standardization of in situ techniques for ruminant feedstuff evaluation. J Anim Sci. 1998; 76(10):2717-29. doi: 10.2527/1998.76102717x.
17. Huntington JA, Givens DI. Studies on in situ degradation of feeds in the rumen: 1. Effect of species, bag motility and incubation sequence on dry matter disappearance. Anim Feed Sci Technol. 1997; 64(2-4):227-41. doi: 10.1016/S0377-8401(96)01057-7.
18. Michalet-Doreau B. Ould-Bah MY. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen: a review. Anim Feed Sci Technol. 1992; 40(1):57–86. doi: 10.1016/0377-8401(92)90112-J.
19. SAS Institute Inc. SAS/STAT 9.1 User’s Guide. Cary, NC, USA. 2004.
20. Kung LJr, Shaver RD, Grant RJ, Schmidt RJ. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci. 2018; 101(5): 4020-4033. doi:10.3168/jds.2017-13909.
21. Albrecht KA, Beauchemin KA. Alfalfa and other perennial legume silage. In: Silage science and technology. 2003. D.R. Buxton, R.E. Muck, J.H. Harrison, Eds. ASA, CSSA and SSSA. Madison, USA. p. 633-64.
22. Zheng M, Niu D, Zuo S, Mao P, Meng L, Xu C. The effect of cultivar, wilting and storage period on fermentation and clostridial community of alfalfa silage. Ital J Anim Sci. 2018; 17(2):336-46. doi:10.1080/1828051X.2017.1364984.
23. Blajman JE, Vinderola G, Páez RB, Signorini RL. The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. J Agric Sci. 2020; 158(1-2):107-18. doi:10.1017/S0021859620000386.
24. Filya I, Muck RE, Contreras-Govea FE. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. J Dairy Sci. 2007; 90(11):5108-14. doi: 10.3168/jds.2006-877.
25. Contreras-Govea FE, Muck RE, Mertens DR, Weimer PJ. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim Feed Sci Technol. 2011; 163(1):2-10. doi: 10.1016/j.anifeedsci.2010.09.015.
26. Oetzel GR. Herd-level ketosis - Diagnosis and risk factors. In: Proc. Preconference Seminar 7C: Dairy herd problem investigation strategies: Transition cow troubleshooting. 2007. Vancouver, BC, Canada, p. 67-91.
27. Zhang T, Li L, Wang X, Zeng Z, Hu Y, Cui Z. Effects of Lactobacillus buchneri and Lactobacillus plantarum on fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. World J Microbiol Biotechnol. 2009; 25(6):965-71. doi: 10.1007/s11274-009-9973-x.
28. Guo XS, Ke WC, Ding WR, Ding ML, Xu DM, Wang WW, Zhang P, Yang FH. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri. Sci Rep. 2018; 8:357. doi:10.1038/s41598-017-18348-0.
29. Liu QH, Dong ZH, Shao T. Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Anim Feed Sci Technol. 2018; 236(1):29-38. doi:10.1016/j.anifeedsci.2017.11.022.
30. Rangrab, LH, Frenzel Mühlbach PR, Berto JL. Silagem de alfalfa colhida no início do florescimento e submetida ao emurchecimento e à ação de aditivos biológicos. Rev Bras Zootec. 2000. 29(2):349-356. doi:10.1590/S1516-35982000000200005.
31. Hashemzadeh-Cigari F, Khorvash M, Ghorbani GR, Ghasemi E, Taghizadeh A, Kargar S, Yang WZ. Interactive effects of molasses by homofermentative and heterofermentative inoculants on fermentation quality, nitrogen fractionation, nutritive value and aerobic stability of wilted alfalfa (Medicago sativa L) silage. J Anim Physiol Anim Nutr. 2014; 98(2):290-99. doi:10.1111/jpn.12079.
imagen ilustrativa

Published

2022-07-05

How to Cite

Genero, G. A., Pechín, G. H., Sánchez, L. O., Ginart, L., Denda, S. S., Sánchez, C., … Gerena, A. (2022). Effect of phenological stage, wilting and microbial inoculants application on nutritional quality of alfalfa silage. Ciencia Veterinaria, 24(2), 113–130. https://doi.org/10.19137/cienvet202224201

Issue

Section

Artículos de Investigación