Interleukin 1-β concentration during porcine gestation
DOI:
https://doi.org/10.19137/cienvet-20182011Keywords:
interelukin 1-β, gestation, porcineAbstract
IL-1β, a proinflammatory cytokine, is involved in the conceptus implantation, invasion and fetal-maternal immunotolerance. It participates in the development of the trophoblast, communication with the endometrium and it´s necessary for a correct implantation. However, the presence of this cytokine, both at the placental and systemic levels, is unknown during the period after the implantation in swine, a species that has an epitheliocorial, noninvasive, adecidua, folded and diffuse placenta. In this study, the concentration of IL-1β in sera, uterus homogenates of non-pregnant sows and homogenates of maternal and fetal placenta of different gestational periods (30, 60, 70 and 114 days) were determined. A peak IL-1β tissue concentration was observed during gestation at 60-70 days in both maternal and fetal placenta. At the systemic level, the determination demonstrated an opposite pattern, a peak in serum IL-1β levels was observed at the end of gestation. These results suggest that IL-1β is useful between the 60 and 70 days of the gestational period in a tissue level, for participation in the molecular mechanisms that allows remodeling in the placental characteristic of this period. Furthermore, the increase of the serum cytokine at the end of gestation probably aims to activate the pro-inflammatory immune system for the onset of labor and expulsion of the placentasDownloads
References
Dinarello, CA., Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011. 117(14): p. 3720-32.
Garlanda, C.; Dinarello CA. and Mantovani, A., The interleukin-1 family: back to the future. Immunity, 2013. 39(6): p. 1003-18.
Geisert, R.; Fazleabas, A.; Lucy, M. and Mathew, D., Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1beta. Cell Tissue Res, 2012. 349(3): p. 825-38.
Pizarro, TT. and Cominelli, F., Cloning IL-1 and the birth of a new era in cytokine biology. J Immunol, 2007. 178(9): p. 5411-2.
Dinarello, CA., Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol, 2009. 27: p. 519-50.
Lamkanfi, M., Emerging inflammasome effector mechanisms. Nat Rev Immunol, 2011. 11(3): p. 213-20.
Martinon, F.; Burns, K. and Tschopp, J., The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26.
Casadio, R.; Frigimelica, E; Bossù, P; et al., Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1beta/IL-1R(I) complex. FEBS Lett, 2001. 499(1-2): p. 65-8.
Walsh, MC.; Kim, GK.; Maurizio, PL; Molnar, EE. and Choi, Y., TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One, 2008. 3(12): p. e4064.
Takaesu, G.; Ninomiya-Tsuji, J.; Kishida, S.; Li, X.; Stark, GR. and Matsumoto, K., Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol, 2001. 21(7): p. 2475-84.
Kridli, RT.; Khalaj, K.; Bidarimath, M. and Tayade, C., Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology, 2016. 85(1): p. 135-44.
Geisert, RD.; Johnson, GA. and Burghardt, RC., Implantation and Establishment of Pregnancy in the Pig. Adv Anat Embryol Cell Biol, 2015. 216: p. 137-63.
Tuo, W.; Harney, JP. and Bazer, FW., Developmentally regulated expression of interleukin-1 beta by peri-implantation conceptuses in swine. J Reprod Immunol, 1996. 31(3): p. 185-98.
Ross, JW.; Ashworth, MD.; Hurst, AG.; Malayer, JR. and Geisert, RD., Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod Biol Endocrinol, 2003. 1: p. 23.
Ross, JW.; Malayer, JR.; Ritchey, JW. and Geisert, RD., Characterization of the interleukin-1beta system during porcine trophoblastic elongation and early placental attachment. Biol Reprod, 2003. 69(4): p. 1251-9.
Mathew, DJ.; Newsom, EM.; Guyton, JM.; Tuggle, CK.; Geisert, RD. and Lucy, MC., Activation of the transcription factor nuclear factor-kappa B in uterine luminal epithelial cells by interleukin 1 Beta 2: a novel interleukin 1 expressed by the elongating pig conceptus. Biol Reprod, 2015. 92(4): p. 107.
Amoroso, EC., Placentation. Parkes, A.S., Ed., Marshall’s Physiology of Reproduction, Longmans Green, London. , 1952: p. 127–311.
Marrable, AW., The Embryonic Pig: A Chronological Account. Ed. Pitman Medical Exe-ter. London., 1971.
Butler, JE.; Lager, KM.; Splichal, I., et al., The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol, 2009. 128(1-3): p. 147-70.
Wooding, P. and Burton, G., Comparative Placentation: Structures, Functions and Evolution. Cambridge, United Kingdom, Ed. Springer., 2008: p. 105-114.
Cristofolini, A.; Sanchis, G.; Moliva, M., et al., Cellular remodelling by apoptosis during porcine placentation. Reprod Domest Anim, 2013. 48(4): p. 584-90.
Koncurat, M.; Greco, C. and Vivas, A. , Hallazgo del factor precoz de preñez (EPF) en extractos placentarios porcinos. Rev Bras Reprod Anim., 1999. 3(193-195).
Margni, R., Inmunología e Inmunoquímica. Fundamentos. 5th ed. Panamericana EM, editor. Buenos Aires., 1996: p. 799-851.
Barañao, RI., et al., Determination of IL-1 and IL-6 levels in human embryo culture-conditioned media. Am J Reprod Immunol, 1997. 37(2): p. 191-4.
Raghupathy, R., Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Semin Immunol, 2001. 13(4): p. 219-27.
Winkler, M.; Fischer, DC.; Ruck, P., et al., Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum Reprod, 1999. 14(4): p. 1096-100.
Winkler, M.; Oberpichler, A.; Tschesche, H.; Ruck, P.; Fischer, DC.; Rath, W., Collagenolysis in the lower uterine segment during parturition at term: correlations with stage of cervical dilatation and duration of labor. Am J Obstet Gynecol, 1999. 181(1): p. 153-8.
van Engelen, E.; de Groot, MW.; Breeveld-Dwarkasing, VN., et al., Cervical ripening and parturition in cows are driven by a cascade of pro-inflammatory cytokines. Reprod Domest Anim, 2009. 44(5): p. 834-41.
Young, A.; Thomson, AJ.; Ledingham, M.; Jordan, F.; Greer, IA. and Norman, JE., Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod, 2002. 66(2): p. 445-9.
Sennstrom, MB.; Ekman, G.; Westergren-Thorsson, G., et al., Human cervical ripening, an inflammatory process mediated by cytokines. Mol Hum Reprod, 2000. 6(4): p. 375-81.
Downloads
Published
How to Cite
Issue
Section
License
Al momento de enviar sus contribuciones, los colaboradores deberán declarar , de manera fehaciente, que poseen el permiso del archivo o repositorio donde se obtuvieron los documentos que se anexan al trabajo, cualquiera sea su formato (manuscritos inéditos, imágenes, archivos audiovisuales, etc.), permiso que los autoriza a publicarlos y reproducirlos, liberando a la revista y sus editores de toda responsabilidad o reclamo de terceros , los autores deben adherir a la licencia Creative Commons denominada “Atribución - No Comercial CC BY-NC-SA”, mediante la cual el autor permite copiar, reproducir, distribuir, comunicar públicamente la obra y generar obras derivadas, siempre y cuando se cite y reconozca al autor original. No se permite, sin embargo, utilizar la obra con fines comerciales.