Expresión de citoquinas durante la gestación porcina

  • Mariángeles Clauzure Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Carolina Lucía Vélez Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Delia María Williamson Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias
  • Laura Romina Giai Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

DOI:

https://doi.org/10.19137/cienvet202224205

Palabras clave:

Porcinos, Gestación, Citoquinas, Inmunología, Reproducción

Resumen

La producción porcina en Argentina se encuentra en constante crecimiento. El manejo reproductivo es fundamental para alcanzar índices óptimos de nacimientos que se traduzcan en una mayor rentabilidad y eficiencia de la inversión ya que las pérdidas prenatales limitan la producción porcina. En la gestación pueden ocurrir alteraciones en la migración de los embriones, su elongación, el reconocimiento inmunológico de la preñez por la madre y la competencia embrionaria por el lugar de implantación. Para que la gestación sea exitosa, el diálogo que se establece entre el conceptus y el endometrio involucra, entre otros, al sistema inmunológico y sus moléculas llamadas citoquinas. Las citoquinas son un grupo de proteínas de bajo peso molecular que actúan mediando interacciones complejas entre distintos tipos celulares. Numerosos estudios describen el rol de diversas citoquinas que se encuentran involucradas en la regulación del proceso inflamatorio característico de la interfase feto/materna a lo largo de la gestación porcina normal. En esta revisión se describen las principales citoquinas que actúan durante la gestación porcina tanto en el período de gestación temprana como en el período de gestación tardía.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariángeles Clauzure, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Lic. en Biotecnología, Dra. Biología Molecular, Esp. en Docencia Universitaria. Investigadora CONICET. Ayudanate de la Cátedra Biología General. Facultad de Ciencias Veterinarias UNLPam

Carolina Lucía Vélez, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Dra. en Ciencias Veterinarias, Jefa de Trabajos Prácticos de la Cátedra Histología. Facultad de Ciencias Veterinarias. Universidad Nacional de La Pampa.

Delia María Williamson, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Dra. en Ciencias Veterinarias, Prof. Adjunta de la Cátedra Biología General. Facultad de Ciencias Veterinarias. Universidad Nacional de La Pampa.

Laura Romina Giai, Universidad Nacional de La Pampa. Facultad de Ciencias Veterinarias

Lic. Prof. en Ciencias Biológicas. Prof. Facultad de Ciencias Veterinarias. Universidad Nacional de La Pampa.

Citas

1. Bazer FW, Johnson GA. Pig blastocyst-uterine interactions. Differentiation. 2014 Jan;87(1-2):52–65.
2. Pope W. Embrionic mortality in swine. In: Zavy M. T. GRD, editor. Embrionic mortality in domestic species. Boca Ratón, Fl, Estados Unidos; 1994. p. 53–77.
3. Williamson DM. Estudio de la presencia de integrinas, y su relación con los niveles de esteroides e interleuquinas, durante la placentación porcina [Doctor en Ciencias Veterinarias]. Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata; 2011.
4. Vélez CL. Integrinas y su regulación por el sistema inmune durante la gestación porcina [Doctor en Ciencias Veterinarias]. Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata; 2017.
5. Wilson ME, Sonstegard TS, Smith TPL, Fahrenkrug SC, Ford SP. Differential gene expression during elongation in the preimplantation pig embryo [Internet]. Vol. 26, genesis. 2000. p. 9–14. Available from: http://dx.doi.org/10.1002/ (sici)1526-968x(200001)26:1<9::aid-gene4>3.0.co;2-1.
6. Bazer FW, Thatcher WW. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2alpha by the uterine endometrium. Prostaglandins. 1977 Aug;14(2):397–400.
7. Spencer, T. E., Bazer, F. W. Uterine and placental factors regulating conceptus growth in domestic animals. J Anim Sci. 2004;82:4–13.
8. Spencer, T. E., Bazer, F. W. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol. 2004;2:49.
9. Pacheco J. Inmunología de la implantación. Ginecología y Obstetricia de México. 1999;45(1):14–22.
10. Garro A. Estudio de la respuesta inmune humoral en la gestación porcina [Doctor en Ciencias Veterinarias]. Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata; 2015.
11. Williamson D.M., Yaful G.N., Riesco O.F., Koncurat M.A. Progesterona, estrógenos y expresión de integrinas en la gestación temprana porcina. Ciencia Veterinaria. 2008;10(1):13–23.
12. Curtis H., Barnes N.S., Schnek A., Massarini A. La respuesta inmunitaria. In: Schnek A. MA, editor. Biología. Buenos Aires, Argentina: Editorial Médica Panamericana; 2008. p. 754–81.
13. Kunicka Z, Kurzyńska A, Szydłowska A, Kaczyńska B, Bogacka I. PPARβ/δ ligands regulate the expression of immune response mediators in the porcine endometrium - An in vitro study. Theriogenology. 2019 Aug;134:112–20.
14. Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ. Cytokines from the pig conceptus: roles in conceptus development in pigs. J Anim Sci Biotechnol. 2014 Nov 7;5(1):51.
15. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011 Apr 7;117(14):3720–32.
16. Garlanda C, Dinarello CA, Mantovani A. The Interleukin-1 Family: Back to the Future [Internet]. Vol. 39, Immunity. 2013. p. 1003–18. Available from: http://dx.doi.org/ 10.1016/j.immuni.2013.11.010
17. Martinon F, Burns K, Tschopp J. The Inflammasome [Internet]. Vol. 10, Molecular Cell. 2002. p. 417–26. Available from: http://dx.doi.org/10.1016/s1097-2765(02)00599-3
18. Casadio R, Frigimelica E, Bossù P, Neumann D, Martin MU, Tagliabue A, et al. Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1beta/IL- 1R(I) complex. FEBS Lett. 2001 Jun 15;499(1-2):65–8.
19. Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y. TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One. 2008 Dec 29;3(12):e4064.
20. Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR, Matsumoto K. Interleukin-1 (IL- 1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol. 2001 Apr;21(7):2475–84.
21. Geisert R, Fazleabas A, Lucy M, Mathew D. Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β. Cell Tissue Res. 2012 Sep;349(3):825–38.
22. Mathew DJ, Newsom EM, Guyton JM, Tuggle CK, Geisert RD, Lucy MC. Activation of the transcription factor nuclear factor-kappa B in uterine luminal epithelial cells by interleukin 1 Beta 2: a novel interleukin 1 expressed by the elongating pig conceptus. Biol Reprod. 2015 Apr;92(4):107.
23. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012 Nov 15;491(7424):393–8.
24. Mathew DJ, Lucy MC, D Geisert R. Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction. 2016 Jun;151(6):R111–22.
25. Whyte JJ, Meyer AE, Spate LD, Benne JA, Cecil R, Samuel MS, et al. Inactivation of porcine interleukin-1β results in failure of rapid conceptus elongation. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):307–12.
26. Tuo W, Harney JP, Bazer FW. Developmentally regulated expression of interleukin- 1 beta by peri-implantation conceptuses in swine. J Reprod Immunol. 1996 Oct;31(3):185–98.
27. Ross JW, Ashworth MD, Hurst AG, Malayer JR, Geisert RD. Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod Biol Endocrinol. 2003 Feb 14;1:23.
28. Ross JW, Malayer JR, Ritchey JW, Geisert RD. Characterization of the interleukin-1beta system during porcine trophoblastic elongation and early placental attachment. Biol Reprod. 2003 Oct;69(4):1251–9.
29. Martinez CA, Rubér M, Rodriguez-Martinez H, Alvarez-Rodriguez M. Pig Pregnancies after Transfer of Allogeneic Embryos Show a Dysregulated Endometrial/Placental Cytokine Balance: A Novel Clue for Embryo Death? Biomolecules [Internet]. 2020 Apr 5;10(4). Available from: http://dx.doi.org/10.3390/biom10040554
30. Geisert RD, Johnson GA, Burghardt RC. Implantation and Establishment of Pregnancy in the Pig. Adv Anat Embryol Cell Biol. 2015;216:137–63.
31. Librach CL, Feigenbaum SL, Bass KE, Cui TY, Verastas N, Sadovsky Y, et al. Interleukin- 1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem. 1994 Jun 24;269(25):17125–31.
32. Vélez C, Barbeito C, Koncurat M. αvβ3 Integrin and fibronectin expressions and their relation to estrogen and progesterone during placentation in swine. Biotech Histochem. 2018;93(1):15–24.
33. Vélez C, Clauzure M, Williamson D, Koncurat MA, Santa-Coloma TA, Barbeito C. IL-1β, IL-2 and IL-4 concentration during porcine gestation [Internet]. Vol. 128, Theriogenology. 2019. p. 133–9. Available from: http://dx.doi.org/10.1016/j. theriogenology.2019.01.017
34. Winkler M, Fischer DC, Ruck P, Marx T, Kaiserling E, Oberpichler A, et al. Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum Reprod. 1999 Apr;14(4):1096–100.
35. Winkler M, Oberpichler A, Tschesche H, Ruck P, Fischer DC, Rath W. Collagenolysis in the lower uterine segment during parturition at term: correlations with stage of cervical dilatation and duration of labor. Am J Obstet Gynecol. 1999 Jul;181(1):153–8.
36. van Engelen E, de Groot MW, Breeveld-Dwarkasing VNA, Everts ME, van der Weyden GC, Taverne MAM, et al. Cervical ripening and parturition in cows are driven by a cascade of pro-inflammatory cytokines. Reprod Domest Anim. 2009 Oct;44(5):834–41.
37. Young A, Thomson AJ, Ledingham M, Jordan F, Greer IA, Norman JE. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol Reprod. 2002 Feb;66(2):445–9.
38. Sennström MB, Ekman G, Westergren-Thorsson G, Malmström A, Byström B, Endrésen U, et al. Human cervical ripening, an inflammatory process mediated by cytokines. Mol Hum Reprod. 2000 Apr;6(4):375–81.
39. Joyce MM, Burghardt JR, Burghardt RC, Hooper RN, Bazer FW, Johnson GA. Uterine MHC class I molecules and beta 2-microglobulin are regulated by progesterone and conceptus interferons during pig pregnancy. J Immunol. 2008 Aug 15;181(4):2494–505.
40. Cencic A, Guillomot M, Koren S, La Bonnardière C. Trophoblastic interferons: do they modulate uterine cellular markers at the time of conceptus attachment in the pig? Placenta. 2003 Sep;24(8-9):862–9.
41. Kim M, Seo H, Choi Y, Shim J, Bazer FW, Ka H. Swine leukocyte antigen-DQ expression and its regulation by interferon-gamma at the maternal-fetal interface in pigs. Biol Reprod. 2012 Feb;86(2):43.
42. D’andréa S, La Bonnardière C. Cloning of the porcine interferon-γ receptor and its foeto-endometrial expression in early pregnancy [Internet]. Vol. 51, Molecular Reproduction and Development. 1998. p. 225–34. Available from: http://dx.doi. org/10.1002/(sici)1098-2795(199811)51:3<225::aid-mrd1>3.0.co;2-r
43. Tayade C, Black GP, Fang Y, Croy BA. Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation. J Immunol. 2006 Jan 1;176(1):148–56.
44. Casazza RL, Lazear HM. Why Is IFN-λ Less Inflammatory? One IRF Decides. Immunity. 2019 Sep 17;51(3):415–7.
45. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009 May;80(5):848–59.
46. Tayade C, Fang Y, Hilchie D, Croy BA. Lymphocyte contributions to altered endometrial angiogenesis during early and midgestation fetal loss. J Leukoc Biol. 2007 Oct;82(4):877–86.
47. Lefèvre F, Martinat-Botté F, Locatelli A, De Niu P, Terqui M, La Bonnardière C. Intrauterine infusion of high doses of pig trophoblast interferons has no antiluteolytic effect in cyclic gilts. Biol Reprod. 1998 Apr;58(4):1026–31.
48. Joyce MM, Burghardt RC, Geisert RD, Burghardt JR, Neil Hooper R, Ross JW, et al. Pig Conceptuses Secrete Estrogen and Interferons to Differentially Regulate Uterine STAT1 in a Temporal and Cell Type-Specific Manner [Internet]. Vol. 148, Endocrinology. 2007. p. 4420–31. Available from: http://dx.doi.org/10.1210/en.2007-0505
49. Koncurat M.A., Greco C., Vivas A. IFN-g concentration in serum and porcine placental extracts from different gestation ages. Biocell. 2001;25(3):23.
50. Linton NF, Wessels JM, Cnossen SA, van den Heuvel MJ, Croy BA, Tayade C. Angiogenic DC-SIGN(+) cells are present at the attachment sites of epitheliochorial placentae. Immunol Cell Biol. 2010 Jan;88(1):63–71.
51. Vélez CL, Williamson D, Clauzure M, Koncurat M, Barbeito C. INFγ and IL-10 seric and placental profile during porcine gestation. Anais da Academia Brasileira de Ciências. Aceptado para su publicación 24/07/2020
52. Clauzure M, Valdivieso ÁG, Massip-Copiz MM, Mori C, Dugour AV, Figueroa JM, et al. Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells. J Cell Biochem. 2017 Aug;118(8):2131–40.
53. Gutiérrez G., Dubinsky V., Pasqualini R.S., Gentile M.T. El rol de la interleuquina 6 en el éxito gestacional. SAEGRE. 2008;15:43–7.
54. Koncurat M.A., Riesco O.F., Williamson D.M. Determinación de IL-6, progesterona y estrógenos en la preñez porcina temprana. In: Memorias XXVII Jornadas científicas. Asociación de biología de Tucumán; 2010. p. 145.
55. Williamson D.M., Riesco O.F., Vélez C.L., Koncurat M.A. Determinación de la concentración de IFN-γ, IL-6, IL-12, IL-15 e IL-18 en suero, extractos placentarios maternos y fetales a través de la gestación porcina. Ciencia Veterinaria. 2011;13(1):31–41.
56. Yaful G. KMA. Concentración de progesterona en placenta materna, fetal y líquido amniótico durante la gestación porcina. ALPA. 2005;13:136–7.
57. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, et al. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992 Mar;89(3):883–91.
58. Agarwal R, Loganath A, Roy A, Wong Y, Lindoff C, Ng S. Increased Expression of Interleukin- 6 in Term Compared to the First Trimester Human Placental Villi [Internet]. Vol. 32, Hormone and Metabolic Research. 2000. p. 164–8. Available from: http:// dx.doi.org/10.1055/s-2007-978615
59. Robertson SA, Christiaens I, Dorian CL, Zaragoza DB, Care AS, Banks AM, et al. Interleukin- 6 is an essential determinant of on-time parturition in the mouse. Endocrinology. 2010 Aug;151(8):3996–4006.
60. Yu Z, Gordon JR, Kendall J, Thacker PA. Elevation in tumour necrosis factor-alpha (TNF-α) messenger RNA levels in the uterus of pregnant gilts after oestrogen treatment [Internet]. Vol. 50, Animal Reproduction Science. 1998. p. 57–67. Available from: http://dx.doi.org/10.1016/s0378 4320(97)00081-x
61. Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells [Internet]. Vol. 161, Journal of Experimental Medicine. 1985. p. 984–95. Available from: http://dx.doi.org/10.1084/jem.161.5.984
62. Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B. The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest. 1992 Sep;90(3):693–8.
63. Hunt JS, Chen H-L, Miller L. Tumor Necrosis Factors: Pivotal Components of Pregnancy? 1 [Internet]. Vol. 54, Biology of Reproduction. 1996. p. 554–62. Available from: http://dx.doi.org/10.1095/biolreprod54.3.554
64. Suzuki C, Yoshioka K, Yamada M, Miyamoto T, Manabe N. Expressions of tumor necrosis factor-α, its receptor I, II and receptor-associated factor 2 in the porcine corpus luteum during the estrous cycle and early pregnancy. Vet Res Commun. 2014 Mar;38(1):1–10.
65. Jana B, Koszykowska M, Andronowska A. The effect of tumor necrosis factor-alpha (TNF-alpha, interleukin (IL)-1beta and IL-6 on prostaglandins (PG)F2alpha and E2 secretion from maternal placenta in pigs. Pol J Vet Sci. 2008;11(4):315–22.
66. Jana B, Kozłowska A, Andronowska A, Jedlińska-Krakowska M. The effect of tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6 on chorioamnion secretion of prostaglandins (PG)F 2 alpha and E2 in pigs. Reprod Biol. 2008 Mar;8(1):57–68.
67. Franczak A, Wojciechowicz B, Kolakowska J, Kotwica G. The effect of interleukin-1β, interleukin-6, and tumor necrosis factor-α on estradiol-17β release in the myometrium: The in vitro study on the pig model [Internet]. Vol. 81, Theriogenology. 2014. p. 266–74. Available from: http://dx.doi.org/10.1016/j.theriogenology.2013.09.024
68. Kridli RT, Khalaj K, Bidarimath M, Tayade C. Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology. 2016 Jan 1;85(1):135–44.
69. Fiers W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991 Jul 22;285(2):199–212.
70. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–52.
71. Allison AC. Antigens shared by tumour cells and fetal or gonadal cells. In: Scott JS, Bird HER, editors. Pregnancy Autoimmunity and Tissue Disorders. Oxford, UK: Oxford University Press; 1990. p. 19–41.
72. Zhou Y, Xu T, Wu Y, Wei H, Peng J. Oxidative Stress and Inflammation in Sows with Excess Backfat: Up-Regulated Cytokine Expression and Elevated Oxidative Stress Biomarkers in Placenta. Animals (Basel) [Internet]. 2019 Oct 14;9(10). Available from: http://dx.doi.org/10.3390/ani9100796
73. Hanna N, Hanna I, Hleb M, Wagner E, Dougherty J, Balkundi D, et al. Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol. 2000 Jun 1;164(11):5721–8.
74. Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996 Aug 1;184(2):539–48.
75. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010 Jan;1183:38–57.
76. Bommer I, Muzzio DO, Zygmunt M, Jensen F. Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells. J Reprod Immunol. 2016 Aug;116:113–6.
77. Walter MR. Interleukin-10 in Health and Disease. Curr Top Microbiol Immunol. 2014;380:1–21.
78. Chang WLW, Baumgarth N, Yu D, Barry PA. Human cytomegalovirus-encoded interleukin-
10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol. 2004 Aug;78(16):8720–31.
79. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the Interleukin- 10 Receptor [Internet]. Vol. 19, Annual Review of Immunology. 2001. p. 683– 765. Available from: http://dx.doi.org/10.1146/annurev.immunol.19.1.683
80. Jensen F, Muzzio D, Soldati R, Fest S, Zenclussen AC. Regulatory B10 Cells Restore Pregnancy Tolerance in a Mouse Model1 [Internet]. Vol. 89, Biology of Reproduction. 2013. Available from: http://dx.doi.org/10.1095/biolreprod.113.110791
81. Hilton DJ, Nicola NA, Gough NM, Metcalf D. Resolution and purification of three distinct factors produced by Krebs ascites cells which have differentiation-inducing activity on murine myeloid leukemic cell lines. J Biol Chem. 1988 Jul 5;263(19):9238–43.
82. Blitek A, Morawska E, Ziecik AJ. Regulation of expression and role of leukemia inhibitory factor and interleukin-6 in the uterus of early pregnant pigs. Theriogenology. 2012 Sep 15;78(5):951–64.
83. Vogiagis D, Salamonsen LA. Review: The role of leukaemia inhibitory factor in the establishment of pregnancy. J Endocrinol. 1999 Feb;160(2):181–90.
84. Goryszewska E, Kaczynski P, Baryla M, Waclawik A. Pleiotropic role of prokineticin 1 in the porcine endometrium during pregnancy establishment and embryo implantation †. Biol Reprod. 2021 Jan 4;104(1):181–96.
85. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005 Nov;11(6):613–30.
86. Modrić T, Kowalski AA, Green ML, Simmen RCM, Simmen FA. Pregnancy-dependent Expression of Leukaemia Inhibitory Factor (LIF), LIF Receptor-β and Interleukin-6 (IL-6) Messenger Ribonucleic Acids in the Porcine Female Reproductive Tract [Internet]. Vol. 21, Placenta. 2000. p. 345–53. Available from: http://dx.doi.org/10.1053/plac.1999.0493
87. Yoo I, Chae S, Han J, Lee S, Kim HJ, Ka H. Leukemia inhibitory factor and its receptor: expression and regulation in the porcine endometrium throughout the estrous cycle and pregnancy. Asian-australas J Anim Sci. 2019 Feb;32(2):192–200.
88. Chen J.R., Cheng J.G., Shatzer T., Sewell L., Hernandez L. & Stewart C.L. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141:4365–72.
89. Verma S, Hiby SE, Loke YW, King A. Human Decidual Natural Killer Cells Express the Receptor for and Respond to the Cytokine Interleukin 151 [Internet]. Vol. 62, Biology of Reproduction. 2000. p. 959–68. Available from: http://dx.doi.org/10.1095/ biolreprod62.4.959
90. Ibrahim T, Przybyl L, Harmon AC, Amaral LM, Faulkner JL, Cornelius DC, et al. Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. Am J Reprod Immunol [Internet]. 2017 Nov;78(5). Available from: http://dx.doi.org/10.1111/aji.12724
91. Marzi M, Vigano A, Trabattoni D, Villa ML, Salvaggio A, Clerici E, et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol. 1996 Oct;106(1):127–33.
92. Lim KJ, Odukoya OA, Ajjan RA, Li TC, Weetman AP, Cooke ID. The role of T-helper cytokines in human reproduction. Fertil Steril. 2000 Jan;73(1):136–42.
93. Hamai Y, Fujii T, Yamashita T, Nishina H, Kozuma S, Mikami Y, et al. Evidence for an elevation in serum interleukin-2 and tumor necrosis factor alpha levels before the clinical manifestations of preeclampsia. Am J Reprod Immunol. 1997 Aug;38(2):89–93.
94. Yu Z, Anne Croy B, King GJ. Lysis of Porcine Trophoblast Cells by Endometrial Natural Killer-Like Effector Cells in Vitro does not Require Interleukin-21 [Internet]. Vol. 51, Biology of Reproduction. 1994. p. 1279–84. Available from: http://dx.doi. org/10.1095/biolreprod51.6.1279
95. Saito S, Nakashima A, Myojo-Higuma S, Shiozaki A. The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol. 2008 Jan;77(1):14–22.
96. Cristofolini A, Sanchis G, Moliva M, Alonso L, Chanique A, Koncurat M, et al. Cellular remodelling by apoptosis during porcine placentation. Reprod Domest Anim. 2013 Aug;48(4):584–90.
97. Kalish RB, Vardhana S, Gupta M, Perni SC, Witkin SS. Interleukin-4 and -10 gene polymorphisms and spontaneous preterm birth in multifetal gestations. Am J Obstet Gynecol. 2004 Mar;190(3):702–6.
98. Deng S, Qiu K, Tu R, Zheng H, Lu W. Relationship Between Pregnancy and Acute Disseminated Encephalomyelitis: A Single-Case Study. Front Immunol. 2020; 11:609476.
99. Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol. 1999 Sep;117(3):550–5. 100. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010 Jun;63(6):601–10.
101. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? [Internet]. Vol. 14, Immunology Today. 1993. p. 353–6. Available from: http://dx.doi. org/10.1016/0167-5699(93)90235-d.
Imagen ilustrativa

Publicado

2022-07-05

Cómo citar

Clauzure, M., Vélez, C. L., Williamson, D. M., & Giai, L. R. (2022). Expresión de citoquinas durante la gestación porcina. Ciencia Veterinaria, 24(2), 183–203. https://doi.org/10.19137/cienvet202224205

Número

Sección

Artículos de revisión