Rendimiento y composición proteica del grano de trigo (Triticum aestivum L.) en respuesta a condiciones contrastantes de disponibilidad de agua y nitrógeno en inicio de floració

  • Nestor Del Campo Universidad Nacional de La Pampa, Facultad de Agronomía
  • Matias Serra Universidad Nacional de La Pampa, Facultad de Agronomía
  • Adriana Elizabet Quiriban Universidad Nacional de La Pampa, Facultad de Agronomía
  • Mirta Castaño Universidad Nacional de La Pampa, Facultad de Agronomía
  • Miguel Angel Fernández Universidad Nacional de La Pampa, Facultad de Agronomía
  • Maria Clementina Pereyra Cardozo Universidad Nacional de La Pampa, Facultad de Agronomía

Palabras clave:

concentración proteica en grano, gliadinas, gluteninas

Resumen

La provincia de La Pampa se ubica en la Región Triguera V Sur, siendo las principales limitantes para la producción triguera la baja disponibilidad de agua y nitrógeno. En el presente trabajo se analizó el rendimiento y los cambios en la composición proteica del grano de cuatro genotipos de Triticum aestivum L. bajo diferentes condiciones de disponibilidad de agua y nitrógeno. Se trabajó en invernáculo con los cultivares ACA 315, Baguette Premium 11, Klein Proteo y DM Cronox. En inicio de floración la mitad de las macetas fueron fertilizadas con 100 Kg N.ha-1. Hasta la cosecha la mitad de las macetas se mantuvieron al 50 y la otra mitad al 100% de capacidad de campo. Se determinaron los componentes del rendimiento, índice de verdor, concentración de proteína, contenido de nitrógeno en grano y concentración de gliadinas y gluteninas en harinas. El cultivar DM Cronox, expresó el mayor rendimiento. En condiciones hídricas limitantes, en dos genotipos, aumentó la fracción rica en gluteninas y disminuyó la de gliadinas, mientras que ante el agregado de nitrógeno sólo aumentó la de gluteninas. La concentración de las fracciones proteicas está asociada al contenido de nitrógeno en grano, principalmente las gliadinas. El cambio en las fracciones proteicas del grano de trigo, al variar la disponibilidad de agua y de nitrógeno depende de la relación genotipo ambiente.

 

DOI: http://dx.doi.org/10.19137/semiarida.2017(02).3750

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Balla K., M. Rakszegi, Z. Li, F. Békés, S. Bencze & O. Veisz. 2011. Quality of Winter Wheat in Relation to Heat and Drought Shock after Anthesis. Czech J. Food Sci. 29: 117-­128.

Beltrano J., M.G. Ronco & M.C. Arango. 2006. Soil drying and rewatering applied at three grain developmental stages affect differentially growth and grain protein deposition in wheat (Triticum aestivum L.). Braz. J. Plant Physiol. 18: 341-­350.

Bono A., A. Quiroga & I. Frasier. 2010. El cultivo de trigo en la región semiárida y subhúmeda pampeana. INTA. EEA Anguil. Publicación Técnica Nº 79.

Daniel C. & E. Triboi. 2002. Changes in wheat protein aggregation during grain development: effects of temperatures and water stress. Eur. J. Agron. 16: 1­12.

Di Rienzo J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada & C.W. Robledo. 2008. InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Foulkes M.J., R. Sylvester­Bradley, R. Weightman & J.W. Snape. 2007. Identifying physiological traits associated with improved drought resistance in winter wheat. Fields Crop Res. 103: 11-­24.

Fowler D.B. 2003. Crop Nitrogen Demand and Grain Protein Concentration of Spring and Winter Wheat. Agron. J. 95: 260-­265.

Fuertes ­Mendizábal T., A. Aizpurua, M.B. González­ Moro & J.M. Estavillo. 2010. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur. J. Agron. 33: 52­-61.

Gandrup M.E., F.O. García, K.P. Fabrizzi & H.E. Echeverría. 2004. Evolución de un índice de verdor en hoja para evaluar el status nitrogenado en trigo. RIA 33: 105-­121.

Grangeto L.R. & J.G. Gavazza. 2013. Evaluación del efecto de distintas variedades de trigo, con diferente participación de los componentes sobre el rendimiento y la calidad en la región semiárida pampeana. Tesis para

obtener el grado académico de Ingeniero agrónomo. Facultad de Agronomía, UNLPam, Santa Rosa.

Gupta R.B., K. Khan & F. MacRitchie. 1993. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 18: 23­-41.

Gooding M.J., R.H. Ellist, P.R. Shewry & J.D. Schofield. 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci. 37: 295­-309.

Guendouz A., M. Hafsi, Z. Khebbat, L. Moumeni & A. Achiri. 2014. Evaluation of grain yield, 1000 kernels weight and chlorophyll content as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Adv. Agric. Biol. 2: 89­-92.

Islam M.R., K.M.S. Haque, N. Akter & M.A. Karim. 2014. Leaf chlorophyll dynamics in wheat based on SPAD meter reading and its relationship with grain yield. Sci. Agri. 8: 13­-18.

Johansson E., M.L. Prieto­Linde & J.Ö. Jönsson, . 2001. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chem. 78: 19­-25.

Kharel T.P., D.E. Clay, S.A. Clay, D. Beck, C. Reese, G. Carlson & H. Park. 2011. Nitrogen and water stress affect winter wheat yield and dough quality. Agron. J. 103: 1389­-1396.

Lerner S.E., A.C. Arrigoni & A.F. Arata. 2013. Uso del nitrógeno y calidad industrial en cultivares de trigo pan (Triticum aestivum L.). RIA 39: 77­-87.

Martre P., J.R. Porter, P.D. Jamieson & E. Triboi. 2003. Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol. 133: 1959­-1967.

Martre P., P.D. Jamienson, M. A. Semenov, R. F. Zyskowski, J.R. Porter & E. Triboi. 2006. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 25: 138­-154.

Menéndez F.J. 2007. Producción de trigo. CREA. Panozzo J.F. & H.A. Eagles. 2000. Cultivar and environmental effects on quality characters in wheat: II Protein. Aust. J. Agric. Res. 51: 629-­636.

Park H., D.E. Clay, R.G. Hall, J.S. Rohila, T.P. Kharel, S.A. Clay & S. Lee. 2014. Winter wheat quality responses to water, environment, and nitrogen fertilization. Commun. Soil Sci. Plant 45: 1894-1905.

Pleijel H., L. Mortensen, J. Fuhrer, K. Ojanperä & H. Danielsson. 1999. Grain protein accumulation in relation to grain yield of spring wheat (Trtiticum aestivum L.) growns in open –top chambers with different concentrations of ozone, carbon dioxide and water availability. Agr. Ecosyst. Environ. 72: 265-­270.

Pinilla Quezada H. & L. E. Herrera Floody. 2008. Efecto de la fertilización nitrogenada tardía en aspectos de calidad panadera en trigo (Triticum aestivum L.). IDESIA 26: 77-­81.

Quiriban A.E., M. Castaño & M. Pereyra Cardozo. 2015. Relación entre la baja disponibilidad de agua en inicio de encañazón en trigo (Triticum aestivum L.) y la concentración de proteína en grano. Semiárida Rev. Fac. Agron. UNLPam. 25(2): 19­-25. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/2518/2406

Salomón N., B. Aldalur, M. Cuniberti & R. Miranda. 2013. Distribución de la calidad del trigo pan argentino utilizando mapas del sistema de información geográfica. RIA 39: 41-50.

Schepers J., T. Blackmer & D. Francis. 1992. Predicting N fertilizer needs for corn in humid regions: Using chlorophyll meters. In: Predicting fertilizer needs for corn in humid regions (B. Bock y K. Kelly eds). NFERC, Bull. Y­226. Muscle Shoals, AL, EE.UU. pp. 105­-114.

Shewry P.R., J.A. Napier & A.S. Tatham. 1995. Seed Storage proteins: Structures and biosynthesis. Plant Cell 7: 945­-956.

Suchy J., O.M. Lukow, D. Brown, R. De Pauw, S. Fox & G. Humphreys. 2007. Rapid assessment of glutenin and gliadin in wheat by UV spectrophotometer. Crop Sci. 47: 91­-99.

Triboi E., A. Abad, A. Michelena, J. LLoveras, J.L. Ollier & C. Daniel. 2000. Environmental effects on the quality of two wheat genotypes: 1. Quantitative and qualitative variation of storage proteins. Eur. J. Agron. 13: 47-­64.

Triboi E. & A.M. Triboi­Blondel. 2002. Productivity and grain or seed composition: a new approach to an old problem­invited paper. Eur. J.Agron. 16: 163­-186.

Triboi E., P. Martre & A.M. Triboi­Blondel. 2003. Environmentally ­induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot. 388: 1731­-1742.

Zadoks J.C., T.T. Chang & F.C. Konzak. 1974. A decimal code for growth stages of cereals. Weed Res. 14: 415-­421.

Zhao C.X., H.M. Rong, W.Z. Lin, W.Y. Fu & L. Qi. 2009. Effects of different water availability at post­anthesis stage on grain nutrition and quality in strong gluten winter wheat. C.R. Biologies 332: 759-­764.

Descargas

Publicado

2018-06-22

Cómo citar

Del Campo, N., Serra, M., Quiriban, A. E., Castaño, M., Fernández, M. A., & Pereyra Cardozo, M. C. (2018). Rendimiento y composición proteica del grano de trigo (Triticum aestivum L.) en respuesta a condiciones contrastantes de disponibilidad de agua y nitrógeno en inicio de floració. Semiárida, 27(2). Recuperado a partir de https://cerac.unlpam.edu.ar/ojs/index.php/semiarida/article/view/2970

Número

Sección

Artículos Científicos y Técnicos